首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to improve the performance of inorganic/organic composites, aluminum trihydroxide (ATH) core composites with a styrene‐ethylene‐butadiene‐styrene block copolymer grafted with maleic anhydride (MAH‐g‐SEBS) shell phase, and P‐N flame retardant as a synergistic agent, were prepared through an interface design. The effects of polyethylene glycol (PEG) content on the interfacial interaction, flame retardancy, thermal properties, and mechanical properties of high‐density polyethylene (HDPE)/ATH composites were investigated by small angle X‐ray diffraction, rotational rheometer, limiting oxygen index, thermogravimetric analysis (TGA), and tensile testing. The ATH synergistic effects of P‐N flame‐retardant improved the combustion performance of HDPE/ATH/PEG(3%)/MAH‐g‐SEBS/P‐N (abbreviated as HDPE/MH3/M‐g‐S/P‐N) composite by forming more carbon layer, increased the elongation at break from 21% to 558% compared to HDPE/ATH, and increased the interface thickness from 0.447 to 0.891 nm. SEM results support the compatibility of ATH with HDPE increased and the interfacial effect was enhanced. TGA showed the maximum decomposition temperature of the two stages and the yield of the residue at high temperature increased first and then decreased with the increase of PEG content. Rheological behavior showed the storage modulus, complex viscosity, and the relaxation time initially increased and then decreased with the increase of PEG content indicating PEG, M‐g‐S, and ATH powder gradually formed a partial coating, then a full coating, and finally an over‐coated core‐shell structured model.  相似文献   

2.
Mechanical and flame retardant properties of ethylene vinyl acetate (EVA) copolymer/organoclay/alumina trihydrate (ATH) nanocomposites have been studied. ATH with different particle sizes, ATH1 (2.2-5.2 μm) and ATH2 (1.5-3.5 μm), and three different surface treatments, uncoated, fatty acid coated and silane coated, have been used. A synergistic effect was observed in EVA/organoclay/ATH nanocomposites with the total heat evolved (THE) and the heat release rate (HRR) lower than that of EVA/ATH composite. It was also found that mechanical and flame retardant properties are affected in different ways by the particle size and the surface treatment of ATH fillers. Improvements in tensile and flame retardant properties were observed in nanocomposites when uncoated ATH fillers and fatty acid coated ATH2 filler were used. On the other hand, silane coating on ATH1 and ATH2 improves limiting oxygen index (LOI) and leads to higher tignition and the best char stability after cone calorimeter test.  相似文献   

3.
The aim of this study was to investigate and compare the flame retardant properties of boron compounds with respect to aluminum trihydroxide (ATH) in an epoxy system based on bisphenol A epichlorohydrin‐based epoxy resin and cycloaliphatic polyamine‐based hardener. Six different boron compounds including colemanite (C), ulexite (U), boric acid (BA), boric oxide (BO), melamine borate (MB) and guanidinium nonaborate (GB) were used as flame retardant additive. The flame retardant properties of epoxy‐based composites were investigated using limiting oxygen index (LOI), UL 94 standards both in vertical and horizontal position, thermogravimetric analysis, cone calorimeter and scanning electron microscopy. According to flammability test results, boron compounds except for C and U showed better performance than ATH. According to the LOI results, 40% BA containing sample had the highest LOI value of 28.5, while 30% MB, 35% GB and 40% BA containing samples had the highest UL 94V rating (V0). According to the cone calorimeter test results, all boron containing samples had better fire performances than ATH containing sample; 40 wt% BO containing sample showed the lowest peak heat release rate, average heat release rate and total heat release values. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Flame retardants from vanillin when utilized together with ammonium polyphosphate (APP) yield excellent synergistic flame retardancy toward epoxy resins. Bisphenol A epoxy resins have been widely used due to their excellent mechanical properties, chemical resistance, electrical properties, adhesion, etc., while they are flammable. Environment‐friendly and bio‐based flame retardants have captured increasing attention due to their ecological necessity. In this paper, 3 bio‐based flame retardants were synthesized from abundant and more importantly renewable vanillin, and their chemical structures were determined by 1H NMR and 13C NMR. They were used together with APP (an environment‐friendly commercial flame retardant) to improve the fire resistance of bisphenol A epoxy resin. With the addition APP content of 15 phr, the modified bisphenol A epoxy resin could reach UL‐94V0 rating during vertical burning test and limit oxygen index values of above 35%, but reducing APP content to 10 phr, the flame retardancy became very poor. With the total addition content of 10 phr, the epoxy resins modified by 7 to 9 phr APP and 1 to 3 phr bio‐based flame retardants with epoxy groups or more benzene rings showed excellent flame retardancy with UL‐94V0 rating and limit oxygen index values of around 29%. The Tgs of the epoxy resins could be remained or even increased after introducing bio‐based flame retardants, as the control; those of APP alone‐modified epoxy resins compromised a lot. The green synergistic flame‐retardant systems have a great potential to be used in high‐performance materials.  相似文献   

5.
Flame retardant nanocomposites have attracted many research efforts because they combine the advantages of a conventional flame retardant polymer with that of polymer nanocomposite. However the properties obtained depend on the dispersion of the nanoparticles. In this study, three types of polymer flame retarded nanocomposites based on different matrices (polypropylene (PP), polybutadiene terephtalate (PBT) and polyamide 6 (PA6)) have been prepared by extrusion. In order to investigate the dispersion of nanoparticles in the polymer containing flame retardant, conventional methods used to characterise the morphology of composites have been applied to FR composites containing nanoclays. XRD, TEM and melt rheology give useful information to describe the dispersion of the nanofiller in the flame retarded nanocomposite. In the PA6-OP1311 (phosphorus based flame retardant) materials, the clay is well dispersed unlike in PBT and PP materials where microcomposites are obtained with some intercalation. The poor dispersion is also highlighted by NMR measurements but the presence of flame retardant particles interferes in the quantitative evaluation of nanoclay dispersion and underestimations are made.  相似文献   

6.

A novel phosphorous containing flame retardant epoxy resin is synthesized by modifying the epoxy resin initially with phosphoric acid and further with aluminum hydroxide (ATH) to enhance the fire retardancy of the modified epoxy resin. The several phosphorous modified epoxy resin to ATH mass ratios were used to study the effect of ATH addition on epoxy. Thermal and mechanical properties. The structure of the modified flame retardant epoxy resin was characterized using Fourier-transform infrared spectroscopy (FTIR) while thermal degradation behavior and flame retardant properties were examined using thermo-gravimetric analysis (TGA) and UL-94 testing. Furthermore, ultimate tensile strength and young modulus were analyzed to study the effect of ATH addition on mechanical properties. The findings indicated that fire retardancy of ATH reinforced modified ep oxy resin is higher than virgin and phosphorous modified epoxy resin and depicted eminent flame retardant properties with suitable mechanical properties.

  相似文献   

7.
The flame retardancy and thermal degradation properties of polypropylene (PP) containing intumescent flame retardant additives, i.e. melamine pyrophosphate (MPyP) and charring‐foaming agent (CFA) were characterized by limiting oxygen index (LOI), UL 94, cone calorimeter, microscale combustion calorimetry, and thermogravimetric analysis (TGA). It has been found that the PP material containing only MPyP does not show good flame retardancy even at 30% additive level. Compared with the PP/MPyP binary system, the LOI values of the PP/MPyP/CFA ternary materials at the same additive loading are all increased, and UL 94 rating is raised to V‐0 from no rating (PP/MPyP). The cone calorimeter results show that the heat release rate and mass loss rate of some ternary materials decrease in comparison with the binary material. The microscale combustion calorimetry results indicate that the sample containing 22.5 wt% MPyP and 7.5 wt% CFA has the lowest heat release rate among all samples. The TGA results show that the thermal stability of the materials increases with the addition of MPyP, while decreases with the addition of CFA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, the flame‐retardant high‐density polyethylene/ethylene vinyl‐acetate copolymer (HDPE/EVA) composites have been prepared by using expandable graphite (EG) as a flame retardant combined with ammonium polyphosphate (APP) and red phosphorus masterbatch (RPM) as synergists. The synergistic effects of these additives on the flammability behaviors of the filled composites have been investigated by limiting oxygen index, UL‐94 test, cone calorimeter test, thermogravimetric analysis (TGA), Fourier‐transform infrared (FTIR), and scanning electron microscopy. The results show that APP and RPM are good synergists for improving the flame retardancy of EG‐filled HDPE/EVA composites. The data from TGA and FTIR spectra also indicate the synergistic effects of APP and RPM with EG considerably enhance the thermal degradation temperatures but decrease the charred residues of the HDPE/EVA/EG composites because the flame‐retardant mechanism has changed. The morphological observations present positive evidences that the synergistic effects take place in APP and RPM with EG in flame‐retardant EG‐filled HDPE/EVA/EG composites. The formation of stable and compact charred residues promoted by APP and RPM with EG acts as effective heat barriers and thermal insulations, which improves the flame‐retardant performances and prevents the underlying polymer materials from burning. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Polyoxymethylene (POM), having the lowest limiting oxygen index (LOI) (only ∼ 15%), is well known as the most difficult to be flame retarded plastic among all the polymers. In this paper, a novel synergistic flame retardant system composed of aluminium hydroxide (ATH), melamine (ME) and novolac resin was designed and successfully applied to flame retard POM. ATH took effects through heat absorption and water release. Both ME and novolac could react with the decomposition product of POM, formaldehyde, thus improving the flame retardancy. Particularly, novolac resin and ME played the roles of macromolecular charring agent and gas source, enhancing the flame retarding actions in the condensed and gaseous phases, respectively. This ternary synergistic system exhibited fine flame retardancy for POM (UL94 V-1 rating for 1.6 mm bar), and the obtained flame retardant POM also showed good processability and mechanical properties due to the lubrication, compatibilization and aid-dispersion effects of novolac resin.  相似文献   

10.
《先进技术聚合物》2018,29(9):2529-2536
A hyperbranched polymer (HBP‐B2) containing siloxane chains was synthesized via bulk polymerization of diepoxide with a primary amine in the presence of monoepoxide. The weight‐average molecular weight of the prepared polymers was approximately 9200. Composites of polylactide (PLA) with aluminum trihydroxide (ATH) and the HBP‐B2 were prepared via direct melt compounding using a brabender. The test results showed that the LOI could be raised to 34% for the PLA composite with 25 wt% ATH and 5% HBP‐B2. The surface thermal profile of the composite during UL94 V test was further captured by an infrared camera, which was helpful to understand the flame‐retardant properties of the different samples. A V‐0 rating could be achieved by adding ATH and HBP‐B2 to the PLA matrix. Incorporation of HBP‐B2 as a plasticizer could increase the impact strength of a PLA blend or composite. For example, an addition of 10 wt% of HBP and 20 wt% ATH increased the elongation at break from 5% for neat PLA to 155% for the PLA composite.  相似文献   

11.
Aluminum hypophosphite (AHP) was introduced into polylactide/intumescent flame retardant (PLA/IFR) systems by melt blending. The flame retardant and thermal properties of the PLA composites were investigated. The results suggest that a synergistic effect exists between IFR and AHP on the char formation and anti‐dripping behavior of PLA composites. The PLA/IFR composites containing 10 wt% IFR can pass the UL‐94 V‐0 rating but the test is accompanied by heavy melt dripping. For the PLA/AHP a UL‐94 V‐2 rating is obtained for the same loading of IFR. However, the composites containing 7 wt% IFR and 3 wt% AHP pass the UL‐94 V‐0 rating with modified dripping behavior. Moreover, the char from combustion of PLA/IFR is flexible but of poor quality. That for PLA/AHP is brittle with many cracks. In contrast, that for PLA/IFR/AHP is strong and compact. Thus it can resist the erosion due to heat and gas formation and protect the inside of the matrix. In addition, AHP causes the crosslinking among APP, which promotes the char formation and prevents the melt dripping. This is the main reason for the good flame retardant properties of PLA composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The combination of organophillised montmorillonite (MMT), synthetic hydromagnesite and aluminium hydroxide (ATH) as flame retardant system for polyethylene-based materials was studied and compared with a similar system with magnesium hydroxide, ATH and MMT. The thermal stability and the flame retardant properties were evaluated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), limiting oxygen index (LOI) and cone calorimeter tests. The results indicated that the addition of montmorillonite makes it possible to reduce the total filler content to achieve the flame retardant requirements. The thermal stability of filled LDPE/EVA blends increases to a higher extent for the samples containing MMT. In the cone calorimeter tests we observed a reduction of the peak heat release rate for the sample containing montmorillonite in comparison with a sample with higher filler loading without this nanoclay. An increase of the stability of the char formed could be responsible for this favourable behaviour when montmorillonite is added.In addition, mechanical properties significantly improved for the composites containing montmorillonite both for the filler loading reduction and the reinforcement effect of the nanoclay.  相似文献   

13.
李斌 《高分子科学》2015,33(2):318-328
The effects of aluminum hypophosphite(AHP) as a synergistic agent on the flame retardancy and thermal degradation behavior of intumescent flame retardant polypropylene composites(PP/IFR) containing ammonium polyphosphate(APP) and triazine charring-foaming agent(CFA) were investigated by limiting oxygen index(LOI), UL-94 measurement, thermogravimetric analysis(TGA), cone calorimeter test(CONE), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). It was found that the combination of IFR with AHP exhibited an evident synergistic effect and enhanced the flame retardant efficiency for PP matrix. The specimens with the thickness of 0.8 mm can pass UL-94 V-0 rating and the LOI value reaches 33.5% based on the total loading of flame retardant of 24 wt%, and the optimum mass fraction of AHP/IFR is 1:6. The TGA data revealed that AHP could change the degradation behavior of IFR and PP/IFR system, enhance the thermal stability of the IFR and PP/IFR systems at high temperatures and promote the char residue formation. The CONE results revealed that IFR/AHP blends can efficiently reduce the combustion parameters of PP, such as heat release rate(HRR), total heat release(THR), smoke production rate(SPR) and so on. The morphological structures of char residue demonstrated that AHP is of benefit to the formation of a more compact and homogeneous char layer on the materials surface during burning. The analysis of XPS indicates that AHP may promote the formation of sufficient char on the materials surface and improve the flame retardant properties.  相似文献   

14.
《先进技术聚合物》2018,29(7):2147-2160
Layered double hydroxides (LDHs) are emerging as a new and green high‐efficient flame retardant. But LDHs aggregate seriously because of their hydrophilicity, which affect deeply the mechanical and flame retardant properties of their composites. For the first time in this paper, microencapsulated LDHs (MCLDHs) with melamine‐formaldehyde (MF) resin were prepared by microencapsulation technology to enhance their compatibility and dispersion within epoxy resin (EP). The mechanical and flame retardant performances of EP/MCLDH composite were studied by comparing with EP/LDH composite. Results showed that the water contact angle of MCLDHs increased from 8.9° to 122.1°, which indicated good compatibility. The particle size of MCLDHs decreased sharply, and more than one‐third were up to submicron scale, which can be conducive to dispersion. Moreover, the tensile strength and elongation at break of EP/MCLDHs with different flame retardant contents were higher than those of EP/LDHs. And the addition of MCLDHs increased the glass transition temperature (Tg) of EP/MCLDHs, which meant a strong interfacial interaction. Besides, compared with EP/LDHs, the limiting oxygen index values of EP/MCLDHs were higher, and its peak of heat release rate and total heat release decreased by 16.3% and 5.5% respectively. EP/MCLDHs achieved from V‐1 to V‐0 rate with the increasing content of MCLDHs from 20% to 30%, while LDHs/EP never passed tests. In the process of heating, H2O, CO2, and NH3 released from MCLDHs formed gaseous phase, and the remaining dense char layers and oxides produced condensed phase, which played an important role in inhibiting combustion.  相似文献   

15.
Thermocompression (with also extrusion and injection molding) is a classical polymer shaping manufacturing, but it does not easily allow designing sophisticated shapes without using a complex mold, on the contrary to 3D printing (or polymer additive manufacturing), which is a very flexible technique. Among all 3D printing techniques, fused deposition modeling is of high potential for product manufacturing, with the capability to compete with conventional polymer processing techniques. This is a quite low cost 3D printing technique, but the range of filaments commercially available is limited. However, in some specific 3D printing processes, no filaments are necessary. Polymers pellets feed directly the printing nozzle allowing to investigate many polymeric matrices with no commercial limitation. This is of high interest for the design of flame‐retarded materials, but literature is scarce in that field. In this paper, a comparison between thermocompression and 3D printing processes was performed on both neat ethylene‐vinyl acetate (EVA) copolymer and EVA flame retarded with aluminum triHydroxyde (ATH) containing different loadings (30 or 65 wt%) and with expandable graphite (EG), ie, EVA/ATH (30 wt%), EVA/ATH (65 wt%), and EVA/EG (10 wt%), respectively. Morphological comparisons, using microscopic and electronic microprobe analyses, revealed that 3D printed plates have lower apparent density and higher porosity than thermocompressed plate. The fire‐retardant properties of thermocompressed and 3D printed plates were then evaluated using mass loss calorimeter test at 50 kW/m2. Results highlight that 3D printing can be used to produce flame‐retardant systems. This work is a pioneer study exploring the feasibility of using polymer additive manufacturing technology for designing efficient flame‐retarded materials.  相似文献   

16.
In this paper, GO-BN(graphene oxide grafted boron nitride) was synthesized from graphene oxide and boron nitride by silane coupling agent KH550. Furthermore, GO-BN and intumescent flame retardant (IFR) were added into natural rubber (NR) simultaneously to improve its flame retardancy. The structure of GO-BN was studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The analysis showed that GO-BN was successfully synthesized. The enhanced flame retardancy performance of flame retardant natural rubber (FRNR) was evaluated by limiting oxygen index (LOI) and UL-94 tests. Moreover, the combustion action of FRNR in fire was evaluated by cone calorimetry. Notably, the results showed that the sample with a GO-BN content of 12 phr showed the best flame retardancy performance. The heat release rate (HRR) and total heat release rate (THR) were remarkably decreased by 42.8% and 19.4%, respectively. Carbon residues were analyzed by infrared spectroscopy and scanning electron microscopy, which showed that GO-BN and IFR had a synergistic catalytic effect. The formation of compact thermal stable carbon layer after combustion was the key to protect engineering materials from combustion.  相似文献   

17.
Cellulose microcrystalline (CMC), a linear polysaccharide with glucosidic bond, was successfully extracted from bamboo powder and modified by 3‐aminopropyltriethoxy silane coupling agent (KH550) to prepare KH550‐CMC. The prepared KH550‐CMC, in association with ammonium polyphosphate (APP), was introduced into epoxy resin (EP) by casting process to obtain flame retardant composites. The fire performance evaluation indicated that the presence of 10‐phr APP and 5‐phr KH550‐CMC in EP achieved the maximal LOI value of 28.9%, passed the UL‐94 V‐0 rating, and significantly decreased the peak heat release rate from 1055 kW/m2 of neat EP to 286 kW/m2. The improved fire performance is due to the improvement of dispersity of CMC in EP matrix and formation of better char layer, thus protecting the matrix effectively. Moreover, the introduction of KH550‐CMC could also partly eliminate the negative influence of flame retardants on the mechanical properties of EP composites due to the strengthening effect of CMC and better interfacial compatibility after modification with KH550.  相似文献   

18.
Iron oxide modified montmorillonite (MMT) as flame retardant was used to polyvinyl chloride (PVC), and the flame retardant and smoke-suppressant properties of the PVC were investigated by the smoke density rating and cone calorimeter tests (CONE), and the thermal degradation behaviors of PVC were studied by thermogravimetric analysis (TG) in air atmosphere. The activation energies for the first stage of thermal degradation were obtained following the equation of Kissinger. The mechanical properties testing resultant data showed that iron oxide modified MMT had little effect on the tensile strength of the sample. The CONE result indicated that iron oxide modified MMT could reduce the heat release rate in flame retardant PVC: a more compact char residue formed on the surface of the sample including iron oxide modified MMT during the combustion process. The TG result showed that the sample with modified iron oxide MMT had higher thermal stability than the pure PVC. Besides, the PVC treated with modified MMT showed high activation energy.  相似文献   

19.
An intumescent flame retardant spirocyclic pentaerythritol bisphosphorate disphosphoryl melamine (SPDPM) has been synthesized and its structure was characterized by Fourier transformed infrared spectrometry (FTIR), 1H and 31P nuclear magnetic resonances (NMR). A series of polylactide (PLA)-based flame retardant composites containing SPDPM were prepared by melt blending method. The combustion properties of PLA/SPDPM composites were evaluated through UL-94, limiting oxygen index (LOI) tests and microscale combustion calorimetry (MCC) experiments. It is found that SPDPM integrating acid, char and gas sources significantly improved the flame retardancy and anti-dripping performance of PLA. When 25 wt% flame retardant was added, the composites achieved UL-94 V0, and the LOI value was increased to 38. Thermogravimetric analysis (TGA) showed that the weight loss rate of PLA was decreased by introduction of SPDPM. In addition, the thermal degradation process and possible flame retardant mechanism of PLA composites with SPDPM were analyzed by in situ FTIR.  相似文献   

20.
The synergistic effects of 4A zeolite (4A) on the thermal degradation, flame retardancy and char formation of a novel halogen‐free intumescent flame retardant polypropylene composites (PP/IFR) were investigated by the means of limiting oxygen index (LOI), vertical burning test (UL‐94), digital photos, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), cone calorimeter test (CCT), laser Raman spectroscopy (LRS) and X‐ray photoelectron spectroscopy (XPS). It was found that a small amount of 4A could dramatically enhance the LOI value of the PP/IFR systems and the materials could pass the UL‐94 V‐0 rating test. Also, it could enhance the fire retardant performance with a great reduction in combustion parameters of PP/IFR system from CCT test. The morphological structures observed by digital and SEM photos revealed that 4A could promote PP/IFR to form more continuous and compact intumescent char layer. The LRS measurement, XPS and TGA analysis demonstrated that the compactness and strength of the outer char surface of the PP/IFR/4A system was enhanced, and more graphite structure was formed to remain more char residue and increase the crosslinking degree. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号