首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For studying the photochemistry of carbonyl chromophores in the side-chain, methacrylic esters of para-acylated 2-phenoxyethanols (CH2 = C(CH3) · CO · O · CH2 · CH2O · C6H4 · CO · R), soluble copolymers with styrene and soluble homopolymers were prepared. Comparison of low temperature emission spectra of model compounds, homopolymers and copolymers doped in polystyrene film indicated some interaction between the excited and the ground state structural units in homopolymers. Quantum yield of main chain scission of copolymers of styrene with monomers 1–3 (R = CH3, C2H5, C6H5) at 313 nm radiation in benzene were about 10?4; the cross-linking was the main reaction for copolymer styrene/monomer 4 (R = C6H5CH2). On exposure of copolymers styrene/monomers 1–4 and polystyrene doped with model compounds in film to 313 nm radiation in air, accelerated photo-oxidation occurs as well as cross-linking. Only chromophores of monomers 3 and 4 were effective as sensitizers of photochemical addition of maleic anhydride to benzene by radiation with γ > 340 nm. The difference in the efficiency between model compounds and copolymers on the one hand and a homopolymer on the other hand is due to self-quenching.  相似文献   

2.
The paper describes the preparation and characterization of cross-linked homopolymers and copolymers of N-isopropyl acrylamide (NIPAAm) with poly(ethylene glycol) methacrylate (PEGMA, Mn = 526 g/mol). Several copolymer samples were prepared by taking varying amounts of monomers i.e. NIPAAm and PEGMA in the initial feed using hydrophilic (IRGACURE-2959) and hydrophobic (DURACURE-1173) photoinitiator. In order to investigate the effect of reaction conditions, copolymers were prepared below or above the lower critical solution temperature (LCST) using water or water:ethanol (50:50) as solvent and by varying the amounts of cross-linker. Hydrogels prepared under varying reaction conditions were characterized for its swelling behaviour (using optical microscope), phase transition temperature (using DSC) and morphology (using SEM). As expected LCST increased from 35 to 39 °C as PEGMA content in copolymers increased from 1 to 20% (w/w). However, the morphology of hydrogels was found to be independent on the reaction conditions.Copolymer films having an optimum combination of swelling and performance properties were evaluated as switchable cell culture membranes. Hepatic cancer cell lines (Hep G-2) was used to study the cell growth and detachment. Cell growth and detachment were found to be dependent on the copolymer composition. Cell viability was found comparable to trypsin which also supports application of these films as cell culture membrane.  相似文献   

3.
A novel linked‐half‐sandwich lutetium–bis(allyl) complex [(C5Me4? C5H4N)Lu(η3‐C3H5)2] ( 1 ) attached by a pyridyl‐functionalized cyclopentadienyl ligand was synthesized and fully characterized. Complex 1 in combination with [Ph3C][B(C6F5)4] exhibited unprecedented dual catalysis with outstanding activities in highly syndiotactic (rrrr>99 %) styrene polymerization and distinguished cis‐1,4‐selective (99 %) butadiene polymerization, respectively. Strikingly, this catalyst system exhibited remarkable activity (396 kg copolymer (molLu h)?1) for the copolymerization of butadiene and styrene. Irrespective of whether the monomers were fed in concurrent mode or sequential addition of butadiene followed by styrene, diblock copolymers were obtained exclusively, which was confirmed by a kinetics investigation of monomer conversion of copolymerization with time. In the copolymers, the styrene incorporation rate varied from 4.7 to 85.4 mol %, whereas the polybutadiene (PBD) block was highly cis‐1,4‐regulated (95 %) and the polystyrene segment remained purely syndiotactic (rrrr>99 %). Correspondingly, the copolymers exhibited glass transition temperatures (Tg) around ?107 °C and melting points (Tm) around 268 °C; typical values for diblock microstructures. Such copolymers cannot be accessed by any other methods known to date. X‐ray powder diffraction analysis of these diblock copolymers showed that the crystallizable syndiotactic polystyrene (syn‐PS) block was in the toluene δ clathrate form. The AFM micrographs of diblock copolymer showed a remarkable phase‐separation morphology of the cis‐1,4‐PBD block and syn‐PS block. This represents the first example of a lutetium‐based catalyst showing both high activity and selectivity for the (co)polymerization of styrene and butadiene.  相似文献   

4.
N‐substituted maleimides polymerize in the presence of a radical initiator to give polymers with excellent thermal stabilities and transparency. In this study, we synthesized various maleimide copolymers with styrenes and acrylic monomers to control their thermal and mechanical properties by the introduction of bulky substituents and intermolecular hydrogen bonding. Three‐component copolymers of N‐(2‐ethylhexyl)maleimide in combination with styrene, α‐methylstyrene (MSt), or 1‐methylenebenzocyclopentane (BC5) as the styrene derivatives, and n‐butyl acrylate, 2‐hydroxyethyl acrylate, 4‐hydroxybutyl acrylate, or acrylic acid as the acrylic monomers were prepared by radical copolymerization. These copolymers were revealed to exhibit excellent heat resistance by thermogravimetric analysis. Glass transition temperatures increased by the introduction of bulky MSt and BC5 repeating units. The mechanical properties of the copolymer films were improved by the introduction of intermolecular hydrogen bonding. Optical properties, such as transmittance, refractive index, Abbe number, and birefringence, were determined for the copolymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1569–1579  相似文献   

5.
The objective of the present work was the synthesis and characterization of a methacrylate-containing siliconized epoxy hybrid monomer and its emulsion copolymerization in the presence of styrene/butyl acrylate monomers. The purity and structural conformation of this monomer were ascertained from FTIR and NMR spectral studies. Thermal properties of the copolymers were investigated by using differential scanning calorimetry and thermal gravimetric analysis. The morphology of copolymers was investigated by scanning electron microscopy and then the effect of siliconized epoxy hybrid monomer concentration on the water absorption ratio was examined. The results show that the water-resistance of the terpolymer films was higher compared with the films of styrene-co-butyl acrylate copolymer.  相似文献   

6.
The novel C60–styrene copolymers with different C60 contents were prepared in sodium naphthalene-initiated anionic polymerization reactions. Like the pure polystyrene, these copolymers exhibited the high solvency in many common organic solvents, even for the copolymer with high C60 content. In the polymerization process of C60 with styrene an important side reaction, i.e., reaction of C60 with sodium naphthalene, would occur simultaneously, whereas crosslinking reaction may be negligible. 13C-NMR results provided an evidence that C60 was incorporated covalently into the polystyrene backbone. In contrast to pure polystyrene, the TGA spectrum of copolymer containing ∼ 13% of C60 shows two plateaus. The polystyrene chain segment in copolymer decomposed first at 300–400°C. Then the fullerene units reptured from the corresponding polystyrene fragments attached directly to the C60 cores at 500–638°C. XRD evidence indicates that the degree of order of polymers increases with the fullerene content increased in terms of crystallography. Incorporation of C60 into polystyrene results in the formation of new crystal gratings or crystallization phases. In addition, it was also found that [60]fullerene and its polyanion salts [C60n(M+)n, M = Li, Na] cannot be used to initiate the anionic polymerization of some monomers such as acrylonitrile and styrene, etc.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2653–2663, 1998  相似文献   

7.
Li-Hsin Chan  Yu-Der Lee 《Tetrahedron》2006,62(41):9541-9547
Maleimide-based red fluorescent copolymers were easily synthesized from palladium catalyzed polycondensation of N-alkyl-3,4-bis(4-bromophenyl)maleimide with commercially available or readily prepared secondary aryldiamines. The copolymers were characterized by gel permeation chromatography, differential scanning calorimetry, cyclic voltammetry, UV-vis absorption, and fluorescence spectroscopy. They showed brilliant red fluorescence in solution (toluene) with emission maximum in the range of 617-638 nm, although severely red-shifted in thin films. With judicious selection of aryldiamine monomers, the red-shifting of the thin film fluorescence can be largely diminished. The structure and property (molecular weight, glass transition temperature, and fluorescence) relationships were analyzed and deciphered as well. A light-emitting device has been fabricated with maleimide-arylamine copolymer in demonstrating the potentials for saturated red polymer light-emitting diodes (PLEDs).  相似文献   

8.
Poly-[3′,4′-dimethoxyacrylophenone], poly-4′-phenylacrylophenone, poly-2′-acrylonaphthone and copolymers of acrylophenone monomers with styrene and methyl methacrylate were prepared. Quantum yields of main chain scission in chlorobenzene by 313 nm radiation were 103 times lower for all homopolymers and copolymers studied than for polyacrylophenone. The emission spectra of the polymers, copolymers and model compounds were taken for films at 77 K. The 3′,4′-dimethoxyacrylophenone, 4′-phenylacrylophenone and 2′-acrylonaphthone structural units exhibited poorly resolved emission spectra in homopolymer, copolymer and model compound. No difference in the emission spectra of films and dispersed homopolymer or copolymer in a poly(methyl methacrylate) matrix was observed. The decay of the emission of all homopolymers and copolymers under study was exponential, the life-time exceeding 0.20 sec.  相似文献   

9.
Solvent-modified (toluene) copolymers have been prepared from styrene cross-linked with commercial divinylbenzene, m-divinylbenzene, and p-divinylbenzene at divinyl monomer contents of 16 mole % and 32 mole % at FM = 0.50. The resultant copolymers have been characterized by swelling-ratio determinations and rates of sulfonation at 60 and 80°C. The solvent-modified 16 mole % cross-linked copolymers sulfonated at rates slightly greater than those characterizing the 8 mole % cross-linked copolymers prepared in the absence of diluent. The order of decreasing sulfonation rates for both the conventional 8 mole % cross-linked systems and for the solvent-modified 16 mole % cross-linked copolymers is commercial divinylbenzene/styrene, p-divinylbenzene/styrene, m-divinylbenzene styrene. The 32 mole % cross-linked systems exhibit a different order of decreasing sulfonation rates: commercial divinylbenzene/styrene, m-divinylbenzene/styrene, p-divinylbenzene/styrene. The swelling ratios of the 32 mole % solvent-modified copolymers were comparable to those of the conventional 8 mole % cross-linked systems.  相似文献   

10.
The synthesis of arborescent styrenic homopolymers and copolymers was achieved by anionic polymerization and grafting. Styrene and p‐(3‐butenyl)styrene were first copolymerized using sec‐butyllithium in toluene, to generate a linear copolymer with a weight‐average molecular weight Mw = 4000 and Mw/Mn = 1.05. The pendant double bonds of the copolymer were then epoxidized with m‐chloroperbenzoic acid. A comb‐branched (or arborescent generation G0) copolymer was obtained by coupling the epoxidized substrate with living styrene‐p‐(3‐butenyl)styrene copolymer chains with Mw ≈ 5000 in a toluene/tetrahydrofuran mixture. Further cycles of epoxidation and coupling reactions while maintaining Mw ≈ 5000 for the side chains yielded arborescent copolymers of generations G1–G3. A series of arborescent styrene homopolymers was also obtained by grafting Mw ≈ 5000 polystyrene side chains onto the linear and G0–G2 copolymer substrates. Size exclusion chromatography measurements showed that the graft polymers have low polydispersity indices (Mw/Mn = 1.02–1.15) and molecular weights increasing geometrically over successive generations. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A new monomer, 2-methylene-7-oxabicyclo[2.2.1]heptane ( IV ) was synthesized via four steps. Its structure was confirmed by IR, 1H-NMR, and 13C-NMR spectra as well as elementary analysis. Free radical polymerization and copolymerization of IV were investigated. No homopolymer was obtained due to the effect of allyl inhibition. When IV copolymerized with electron-donor monomers, such as vinyl acetate and stvrene, IV acted as inhibitor for the polymerization of vinyl acetate, but could not inhibit the polymerization of styrene. However, the copolymers of IV with electron-accepting monomers, such as methyl methacrylate, acrylonitrile, or maleic anhydride (MA) were obtained. The contents of IV in the copolymers increased as e values of electron-accepting monomers increased. Strictly alternating copolymer was obtained only in the case of MA and IV . The thermal properties of copolymers were investigated. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Synthesis, characterization and solution properties of a new series of the PNIPAM-soybean oil and/or polypropylene glycol, PPG, conjugates (conjugates also referred to as co-networks) have been described. For this purpose free radical polymerization of NIPAM monomer was initiated by macroinitiators based on PSB and/or PPG in order to obtain PSB-g-PNIPAM, PPG-g-PNIPAM and PSB-g-PPG-g-PNIPAM cross-linked graft copolymers. The autooxidation of soybean oil under air at room temperature rendered waxy soluble polymeric soybean oil peroxide associated with cross-linked parts. The soluble polymeric oil macro-peroxide isolated from the cross-linked part was used to initiate the free radical polymerization of NIPAM to give PSB-g-PNIPAM cross-linked copolymer. To obtain PPG-macromonomeric initiator, PPG-MIM, PPG-bis amino propyl ether with Mn 400 (or 2000) Dalton was reacted with 4,4′-azo bis cyanopentanoyl chloride and methacryloyl chloride, respectively. PPG-MIM also initiated the free radical polymerization of NIPAM at 80 °C to yield PPG-g-PNIPAM cross-linked thermoresponsive product. In order to obtain PSB-g-PPG-g-PNIPAM cross-linked triblock copolymer, NIPAM was polymerized by using the mixture of two macroinitiators, PSB and PPG-MIM. PSB contents in the graft copolymers were calculated via elemental analysis of nitrogen in graft copolymers. Thermal analysis, SEM, FTIR and 1H NMR techniques were used in the characterization of the products. The effect of polymeric soybean oil, PSB, and/or PPG on the thermal response rate of poly(N-isopropylacrylamide, PNIPAM, cross-linked-graft copolymers swollen in water has been investigated by means of swelling-deswelling and drug release behaviors against to temperature change. Lower critical solution temperatures (LCST) of the cross-linked PNIPAM conjugates (conjugates also referred to as co-networks) were determined from the curves of swelling degrees versus solution temperatures. The response temperature of the hydrophobically modified PNIPAM conjugates was reduced to 27 °C, 23 °C and 27 °C for PSB-g-PNIPAM, PPG-g-PNIPAM and PSB-g-PPG-g-PNIPAM, respectively. We have found that the graft copolymers were not pH-responsive. In addition, higher pH ranges cause the hydrolysis of the PSB ester linkages, quickly and makes the cross-linked graft copolymers soluble.The fastest shrinking of the gels was observed by loosing water between 65% and 98% at 50 °C.Methyl orange (MO), was used as a model drug, loaded into cross-linked graft copolymers to examine and compare the effects of controlled release at lower and higher temperatures of lower critical solution temperature (LCST).  相似文献   

13.
1,4-Diphenyl-1,3-butadiene reacts readily with sec-butyllithium in toluene to form adducts. Although this 1,4-substituted conjugated diene did not homopolymerize or copolymerize with styrene, with butadiene it formed copolymers having compositions varying from one end of the chain to the other. The monomer reactivity ratios found were r1 = 8.2, r2 = 0 in toluene and r1 = 2.1, r2 = 0 in toluene–tetrahydrofuran (0.2%) solution. The intramolecular composition distribution of these polymers varied from an initial butadiene-rich composition, dependent on the ratio of monomers charged, to the equimolar composition of the alternating copolymer. In spite of this compositional heterogeneity, the crosslinked polymers exhibited a single glass transition characteristic of the mean composition. A secondary, high-temperature dispersion observed in the dynamic viscoelastic properties of some of the products is shown to be attributable to network topological effects.  相似文献   

14.
The new functional styrenic monomer, 4-trisylmethyl styrene (TsiMS) [Tsi=trisyl=tris(trimethylsilyl)methyl], was synthesized by reacting 4-chloromethyl styrene (CMS) with trisyllithium (TsiLi) in tetrahydrofuran (THF) solvent in the presence of copper chloride (CuCl). Attempt for the free radical polymerization of TsiMS by α,α-azobis(isobutyronitrile) (AIBN) as an initiator at 70 ± 1 °C failed for several periods of times. This result showed that the trisyl group is a highly sterically hindered substituent and, subsequently, TsiMS becomes resistant for polymerization. Therefore, for preparation of new methacrylic, acrylic and dienic copolymers of TsiMS, we firstly synthesized the copolymers of CMS with different monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA), methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA) and isoprene (IP) by free radical polymerization method in toluene solution at 70 ± 1 °C using AIBN initiator to give the copolymers I-VI in good yields. The copolymer compositions were obtained using related 1H NMR spectra and the polydispersity indices of the copolymers determined using gel permeation chromatography (GPC). The trisyl groups were then covalently attached to the obtained copolymers as side chains by reaction between excess of TsiLi and benzyl chloride bonds of CMS units, to give the copolymers - in 80-92% yields. All the resulted polymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility of all the copolymers was examined in various polar and non-polar solvents. The glass transition temperature (Tg) of all copolymers was determined by differential scanning calorimetry (DSC) apparatus. The Tg value of copolymers containing bulky trisyl groups was found to increase with incorporation of trisyl groups in polymer structures. The presence of trisyl groups in polymer side chains, create new macromolecules with novel modified properties.  相似文献   

15.
16.
Homo/co-poly(decyloxymethacrylate)s containing thermally reversible nitro and cyano substituted azobenzenes and thermally irreversible fulgimide units in the pendant respectively were synthesized by free radical addition polymerization method and investigated their photochromic property. The dual-mode optical switching property of copolymers F-co-N and F-co-C was investigated and revealed C-form of fulgimide in F-co-N altered the electron withdrawing nature of nitro group in the terminal azobenzene. The UV exposed films of F-co-N and F-co-C were annealed around their Tg and found that thermally reversible cis-form of azobenzene isomerized to trans-form and thermally irreversible C-form of fulgimide unaltered. Both photochromic units in the resultant film were converted into planar configurations with good fluorescence property.  相似文献   

17.
Hydrogen cyanide is a minor product of degradation of copolymers of styrene and acrylonitrile. The liquid products have been separated and identified by combined gas chromatography and mass spectrometry (GC-MS), as styrene, acrylonitrile, toluene, and benzene. The ratio of styrene to acrylonitrile monomers in the products is approximately twice that of the monomer units in the copolymers, and the ratios of styrene to toluene and benzene are the same as are obtained from pure polystyrene. These ratios were determined by using infrared spectral methods. The fraction of products volatile at the temperature of degradation but involatile at ambient temperature was also analyzed by using GC-MS. A series of four dimers and four trimers were fairly reliably identified. The residual material from copolymers containing up to 33.4% acrylonitrile is always soluble in toluene. The 50/50 copolymer and its residues are insoluble in toluene. Yellow coloration develops in the residues from high acrylonitrile copolymers at advanced stages of degradation. Infrared and ultraviolet spectra suggest that this is due to conjugated unsaturation in the polymer chain backbone which may be associated with the liberation of hydrogen cyanide from the acrylonitrile units.  相似文献   

18.
Radical copolymerization of styrene with tert-butyl acrylate is studied under different conditions. It is found that the addition of tri-n-butylborane or tri-n-butylborane along with p-quinones (2,3-dimethylbenzoquinone, 2,5-di-tert-butylbenzoquinone) results in changes in the relative activities of monomers. Copolymerization in the presence of tri-n-butylborane and p-quinones proceeds via the mechanism of reversible inhibition and is characterized by the linear increase in number-average molecular weight with conversion and by the capacity of copolymers of reinitiation. The hydrolyzed copolymer samples form more stable films compared to copolymers prepared via conventional radical copolymerization.  相似文献   

19.

New methacrylate monomers, 2‐{[(diphenylmethylene)amino]oxy}‐2‐oxoethyl methacrylate (DPOMA) and 2‐{[(1‐phenylethylidene)ami no]oxy}‐2‐oxoethyl methacrylate (MMOMA) were prepared by reaction of sodium methacrylate with diphenylmethanone O‐(2‐chloroacetyl) oxime and 1‐phenylethanone O‐(2‐chloroacetyl) oxime, respectively. They were obtained from a reaction of chloroacetyl chloride with benzophenone oxime or acetophenone oxime. The free‐radical‐initiated copolymerization of (DPOMA) and (MMOMA) with styrene (St) were carried out in 1,4‐dioxane solution at 65°C using 2,2‐azobisisobutyronitrile (AIBN) as an initiator with different monomer‐to‐monomer ratios in the feed. The monomers and copolymers were characterized by FTIR, 1H‐ and 13C‐NMR spectral studies. The copolymer compositions were evaluated by nitrogen content in polymers. The reactivity ratios of the monomers were determined by the application of Fineman–Ross and Kelen–Tüdös methods. The molecular weights (M¯w and M¯n) and polydispersity index of the polymers were determined by using gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of St in the copolymers. The activation energies of the thermal degradation of the polymers were calculated with the MHRK method. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of DPOMA or MMOMA in the copolymers. The antibacterial and antifungal effects of the monomers and polymers were also investigated on various bacteria and fungi. The photochemical properties of the polymers were investigated by UV and FTIR spectra.  相似文献   

20.
Copolymers of (R)-3-hydroxybutyrate (3HB) and (R)-lactate ((R)-2-hydroxypropionate: 2HP) units were synthesized by polycondensation reaction from methyl esters of 3HB and 2HP in the presence of titanium-based catalyst. Mixing of two monomers from the beginning of polymerization yielded random copolymers of 3HB and 2HP units. On the other hand, by controlling the time of mixing of two monomers, copolymers with blocking tendency were obtained. The structure and thermal properties of the obtained copolymers were characterized by 1H and 13C NMR, X-ray diffraction, differential scanning calorimetry, and optical microscopy. Glass-transition temperature of the copolymers was mainly governed by the copolymer composition, and the values varied linearly with the composition. In contrast, the melting temperature was strongly depending on the sequential length of crystallizable monomeric unit, and the values were in inverse proportion to the number-averaged sequential length of crystallizable monomeric unit. The crystallinity of the copolymer samples was affected by both the composition and sequential length of crystallizable monomeric unit. The finding is valuable for design of copolymer molecules with desirable thermal properties by controlling both the copolymer composition and sequential structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号