首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pristine multiwalled carbon nanotubes (MWCNTs) were impregnated in acrylonitrile butadiene rubber (NBR) using internal dispersion kneader and two roller mixing mill to investigate the effects of various nanotubes concentrations on the thermal transport/stability of rubber nanocomposites. Thermal conductivity (λ N) and thermal impedance (R) measurement experimental setups were established according to ASTM E1225-99 and D5470-03. The 1 mass % addition of MWCNTs in the polymer matrix has enhanced R up to 44 % and reduced λ N of the rubber nanocomposite up to 40 % compare to the base composite formulation. Thermal decomposition and differential thermal analyses of the fabricated composite specimens simulate that the thermal stability and endothermic capability are augmented with increasing the nanotubes contents in the host matrix. The progressive incorporations of carbon nanotubes into the rubber matrix have efficiently influenced the composite specimens regarding glass transition, crystallization, and melting temperatures including their specific enthalpies. Scanning electron microscopy along with the energy dispersive spectroscopy was used to analyze MWCNTs dispersion in NBR matrix, compositional analysis of the nanocomposite, and impregnated nanotubes.  相似文献   

2.
Graphene oxide (GO) is used as a stabilizer in the Pickering emulsion polymerization of methyl methacrylate (MMA) to prepare PMMA/GO nanocomposites. Transmission electron microscope studies of the emulsion polymerization products showed that the average diameter of nanocomposite particles was about 150 nm, the transparent GO flakes covered the surface of the particles, and were well dispersed in polymer matrix. The influence of GO on the thermal stability of PMMA was investigated by thermogravimetry analysis and differential scanning calorimetry. The results showed that the thermal stability and the glass transition temperature (T g) of PMMA/GO nanocomposites were improved obviously compared with PMMA. The apparent activation energy (E a) for the degradation process of PMMA/GO nanocomposites was evaluated by Kissinger method, which indicated that their E a s were much higher than those of PMMA both in nitrogen and air atmosphere.  相似文献   

3.
Polylactide (PLA) nanocomposites containing various functionalized multi-walled carbon nanotubes (MWCNTs) were prepared directly by melt compounding. The linear rheology and thermal stability of the PLA nanocomposites were, respectively, investigated by the parallel plate rheometer and TGA, aiming at examining the effect of surface functionalization on the dispersion of MWCNTs by using viscoelastic and thermal properties. Among three MWCNTs used in this work, the carboxylic MWCNTs present better dispersion in PLA matrix than the hydroxy and purified MWCNTs because the corresponding composite shows the lowest rheological percolation threshold, which is further confirmed by the TEM and solution experiments. The presence of all these three MWCNTs, however, nearly cannot improve the thermal stability effectively at the initial stage of degradation and the temperature corresponding to a weight loss of 5 wt% (T5 wt%) only shows slight increase in contrast to that of the neat PLA while with increase of decomposition level, the presence of carboxylic and purified MWCNTs retards the depolymerization of PLA evidently, showing remarkable increase in the temperature corresponding to maximum rate of decomposition (Tmax). Both the dispersion state and the surface functionalization of MWCNTs are very important to the thermal stability of PLA matrix.  相似文献   

4.
ABS-g-MAH (maleic anhydride) with different grafting degree, ABS/OMT (organo montmorillonite) and ABS-g-MAH/OMT nanocomposites were prepared via melt blending. The grafting reaction, phase morphology, clay dispersion, thermal properties, dynamic mechanical properties and flammability properties were investigated. FTIR spectra results indicate that maleic anhydride was successfully grafted onto butadiene chains of the ABS backbone in the molten state using dicumyl peroxide as the initiator and styrene as the comonomer and the relative grafting degree increased with increasing loading of MAH. TEM images show the size of the dispersed rubber domains of ABS-g-MAH increased and the dispersion is more uniform than that of neat ABS resin. XRD and TEM results show that intercalated/exfoliated structure formed in ABS-g-MAH/OMT nanocomposites and the rubber phase intercalated into clay layers distributed in both SAN phase and rubber phase. TGA results reveal the intercalated/exfoliated structure of ABS-g-MAH/OMT nanocomposites has better barrier properties and thermal stability than intercalated ones of ABS/OMT nanocomposites. The Tg of ABS-g-MAH/OMT nanocomposites was also higher than that of neat ABS/OMT nanocomposites. The results of cone measurements show that ABS-g-MAH/OMT nanocomposites exhibit significantly reduced flammability when compared to ABS/OMT nanocomposites even at the same clay content. The chars of ABS-g-MAH/OMT nanocomposites were tighter, denser, more integrated and fewer surface microcracks than ABS/OMT residues.  相似文献   

5.
This paper presents the properties of epoxy nanocomposites, prepared using a synthesized hybrid Polypyrrole-Graphene Oxide (PPy-GO) filler, via in-situ chemical polymerization, at various filler loadings (i.e., 0.5–2 w. t %). The microstructures and properties of the PPy-GO hybrids and epoxy nanocomposites were studied via Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), mechanical (Tensile Properties), electrical, Dynamic mechanical thermal analysis (DMTA) and thermogravimetric analyses (TGA). Morphological study demonstrated that varying the nanofiller nature (PPy-GOs, PPy or GO) lead to different states of dispersion. Mechanical, electrical and thermal analysis demonstrated that the hybrid concentration and its architecture (PPy:GO ratio) are interesting factors significantly affected the properties of the epoxy based nanocomposites. On the other hand, the mechanical performance of the cured nanocomposites outperformed the PPy-GO, with enhancements of 78% and 51% of Young's modulus and strength, respectively. Here it has been established that the embedding of PPy-GO hybrids into pristine epoxy endows optimum dispersion of PPy and GO as well as better interfacial adhesion between the fillers and matrix, which results in a significant improvement in load transfer effectiveness. Electrical conductivity measurements showed that conductivity of epoxy filled nanocomposites increased up 10−4 S/cm for Epoxy/PPy-GO nanocomposites. DMTA test indicated that incorporation of PPy-GO resulted in a significantly increase in Tg of the resultant nanocomposites, which is attributed to the highly exfoliation structure and the stronger interfacial interaction. The PPy-GO particles enhanced electrical, thermal and mechanical properties of nanocomposites, confirming the synergistic effect of PPy-GO as multifunctional filler.  相似文献   

6.
Polycarbonate was melt blended with solid bisphenol A bis(diphenyl phosphate), and a series of organoclays. Effects of the organoclay modifiers on the flammability, thermal and mechanical properties of the nanocomposites were studied by limiting oxygen index, UL-94 burning test, thermogravimetric analysis, differential scanning calorimetry, tensile test and dynamic mechanical analysis. Although all the nanocomposites exhibit an intercalated-exfoliated morphology, they vary in the magnitude of intercalation revealed by X-ray diffraction and transmission electron microscopy. Flammability of the nanocomposites is strongly related to the thermal stability rather than the morphology. Glass transition temperature (Tg) and mechanical properties are controlled by both the morphology and the affinity of the organoclays with the matrix. The modifier containing hydroxyl moiety has stronger interactions with the matrix but it can promote its degradation, thus the corresponding nanocomposite exhibits a better intercalated morphology, higher Tg, superior strength and modulus however a worse thermal stability and flame retardancy. An additional silane within the organoclays would make the organoclays more compatible with the matrix but be a steric obstacle to the intercalation of the matrix chains; however, flame retardancy of the corresponding nanocomposite is enhanced due to the flame retardant nature of the silane. Similarly, the modifier bearing two long alkyl tails shows stronger affinity with the matrix than the one bearing a single tail, but it would hinder the intercalation due to the steric effect. These establishments between organoclay modifiers and the properties of nanocomposites might be guidance for developing materials with practical applications.  相似文献   

7.
Polylactide-based systems composed of an organoclay (Cloisite® 30B) and/or a compatibilizer (Exxelor VA1803) prepared by melt blending were investigated. Two types of not compatibilized nanocomposites containing 3 wt% or 10 wt% of the organoclay were studied to reveal the effect of the filler concentration on the nanostructure and physical properties of such systems. The 3 wt%-nanocomposite was also additionally compatibilized in order to improve the nanoclay dispersion. Neat polylactide and polylactide with the compatibilizer processed in similar conditions were used as reference samples. The X-ray investigations showed the presence of exfoliated nanostructure in 3 wt%-nanocomposite. Compatibilization of such system noticeably enhanced the degree of exfoliation of the organoclay. Viscoelastic spectra (DMTA) showed an increase of the storage and loss moduli with the increase of the organoclay content and dispersion. Dielectric properties of the nanocomposites show a weak influence of the nanoclay on segmental (αS) and local (β)-relaxations in PLA, except for the highest nanoclay content. Above Tg a strong increase of dc conductivity related to ionic species in the clay is observed. It gives rise also to the Maxwell-Wagner-Sillars interfacial polarization and both real and imaginary parts of ε strongly increase. In the temperature dependence of low frequency dielectric constant and mechanical moduli (at 1 Hz) an additional maximum around 80-90 °C is observed due to cold crystallization of PLA.  相似文献   

8.
Polypropylene/surface modified clay nanocomposites were prepared by melt intercalation in twin-screw extruder followed by blown film extrusion. The effects of organically modified clay on the physical, mechanical, thermal and morphological properties of the prepared nanocomposites were studied. The results showed that 95% enhancement in tensile strength and 152% increase in tensile modulus was observed. TGA analysis in inert atmosphere showed an 87 °C marked increase in the thermal degradation temperature. The DSC curve showed the melting point was increased 4 °C in presence of clay in the matrix owing to the fact that the filler acts as reinforcing effect. The dynamic mechanical analysis (DMA) results showed improvement in storage modulus from 9.76 × 103 to 1.12 × 104 MPa with the incorporation of organically modified clay and thus enhanced its stiffness. The morphology of the nanocomposites was further studied using scanning electron microscopy (SEM). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) which confirmed the exfoliation structure of the nanocomposites.  相似文献   

9.
《印度化学会志》2022,99(11):100772
The incorporation of transition metal oxide fillers into the polymer matrix through solution mixing polymerization imparts enhanced electrical and thermal properties. The present work focused on the optical properties, crystallinity, thermal stability, temperature-dependent conductivity, dielectric constant and modulus of chlorinated polyethylene/copper alumina (CPE/Cu–Al2O3) nanocomposites. Optical absorption measured using an ultraviolet–visible (UV–visible) spectrometer shows enhanced intensity and a blue shift for CPE/Cu–Al2O3 nanocomposites. The bandgap energy of CPE/Cu–Al2O3 nanocomposites was lower than pure CPE and minimum bandgap energy was recorded for a 7 wt% composites. The X-ray diffraction demonstrates that Cu–Al2O3 nanoparticles were uniformly introduced into the CPE matrix. Thermogravimetric analysis (TGA) manifests improved thermal stability of nanocomposites. Dielectric properties decrease with frequency, whereas AC conductivity increases with frequency, and both AC conductivity and dielectric properties increase with temperature. The maximum AC conductivity and dielectric constant were obtained for 7 wt % nanofiller loaded sample. For all systems, the activation energy for electrical conductivity decreases with rising temperatures. The experimental dielectric constant values of CPE nanocomposites were correlated with different theoretical models. The Bruggeman model was in good agreement with the experimental permittivity. The impedance experiments showed a decreasing trend with temperature, indicating the semiconducting nature of prepared nanocomposites.  相似文献   

10.
The influence of wollastonite (CaSiO3) content on the crystallization properties and thermal stability of polypropylene (PP) composites was investigated. The results showed that the crystallization temperature, crystallization end temperature and crystallization temperature interval, as well as the degree of crystallinity of the composites, were higher than those of the unfilled PP resin, while the crystallization onset temperature was little changed from that of the unfilled PP resin. The increase of degree of crystallinity for the composites could be attributed to the heterogeneous nucleation of the CaSiO3 in the PP matrix. The thermal stability increased with increasing filler weight fraction (ϕf); the thermal decomposition rate decreased nonlinearly with increasingϕf. Finally, the dispersion of the filler particles in the matrix was observed, and the mechanisms of thermal stability and crystallizing behavior were discussed.  相似文献   

11.
Nanotechnology has been explored recently as a means of enhancing the properties of conventional elastomers for engineering applications. In the current study, the effect of nanofillers on air impermeability properties of Brominated isobutylene‐isoprene rubber (BIIR)/Epoxidized natural rubber (ENR) blend has analyzed for automotive applications. The ENR chosen is ENR 25 and ENR 50 (25 and 50% epoxidation) and prepared the blends in a ratio of 75:25 (BIIR:ENR), and from both blend based composites, a part of carbon black replaced with graphene nanoplatelets (GNP). The physical and thermal properties were compared for both binary blend nanocomposites to study the level of exfoliation and reinforcement behavior of GNP. Morphology studies were employed to reveal the level of interaction between GNP and carbon black in both blends. The influence of epoxidation in the formation of nanostructures in both blends have been evaluated, and the effect of nanostructures on air permeability properties was studied. The air impermeability of BIIR‐ENR 50 nanocomposites were improved with increasing platelet concentration, a 30% improvement in air permeability is obtained for BIIR‐ENR 50 composites over BIIR ‐ENR 25.  相似文献   

12.
The thermal degradation of a series of three novel bridged polyhedral oligomeric silsesquioxanes (POSS)/polystyrene (PS) nanocomposites, at different POSS content (3%, 5% and 10%), was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres, in order to investigate the effects of this new dumbbell-shaped structure on the filler–polymer interaction and then on the thermal stability of the obtained materials. Nanocomposites were synthesized by in situ polymerization of styrene in the presence of POSS which has not polymerizable groups, aiming to obtain well dispersed POSS/PS systems. The actual filler concentration in the obtained nanocomposites was checked by 1H NMR spectroscopy. Scanning electron microscopy (SEM) and FTIR spectroscopy evidenced the presence of filler–polymer interactions. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the characteristic parameters of thermal stability, namely temperature at 5% mass loss (T5%) and the activation energy (Ea) of degradation, of the various nanocomposites were determined. The results were discussed and interpreted.  相似文献   

13.
High temperature degradation of a fluoroelastomer and its nanocomposites was carried out from room temperature to 700 °C using thermogravimetric analysis (TGA) in nitrogen and oxygen atmospheres. The presence of the unmodified nanoclay enhanced the onset of degradation in both the environments, because of polymer-filler interaction, exfoliation, uniform dispersion and high thermal stability of the layered silicates. In the derivative curve, there was a single Tmax, indicating one-stage degradation for all the samples. The non-isothermal activation energy of degradation was determined using the Kissinger and the Flynn-Wall-Ozawa methods. The nanocomposites showed higher activation energy than the neat elastomer. The activation energy of degradation, as observed by isothermal kinetics, was 165, 168 and 177 kJ mol−1 for the neat elastomer, modified and unmodified clay filled samples, respectively. Intrinsic viscosity, measured after low temperature ageing (125-175 °C) showed that the viscosity values were higher for the nanocomposites. The mechanism of degradation is discussed.  相似文献   

14.
Sodium-montmorillonite (Na-MMT) nanoclay was modified with different concentrations of octadecylamine organic modifying agent at 0.5, 1.0 and 1.5 times the CEC of Na-MMT. Influence of concentration of modifying agent on properties of the organoclays and natural rubber/organoclay nanocomposites was investigated. It was found that the optimum concentration of modifying agent was 1.5 times the CEC of Na-MMT. That is, at this concentration, larger d-spacing of organoclay particles and higher degree of clay dispersion in natural rubber matrix were observed. Larger interlayer d-spacing also caused enhancement of the mechanical properties of the NR/organoclay nanocomposites. Additionally, the NR/organoclay nanocomposites with higher concentration of modifying agent exhibited faster curing reaction with higher crosslink density. Furthermore, the organoclays with larger d-spacing and higher degree of dispersion in the natural rubber matrix exhibited enhancement of the mechanical and dynamic properties and thermal stability of natural rubber/organoclay nanocomposites.  相似文献   

15.
Montmorillonite (MMT) was modified with the acidified cocamidopropyl betaine (CAB) and the resulting organo-montmorillonite (O-MMT) was dispersed in an epoxy/methyl tetrahydrophthalic anhydride system to form epoxy nanocomposites. The dispersion state of the MMT in the matrix was investigated by X-ray diffraction and scanning electronic microscopy. The thermal stability of the epoxy nanocomposites was examined by TGA. Thermal stability of the epoxy nanocomposite is dependent upon the dispersion state of the OMMT in the epoxy matrix although all the epoxy nanocomposites had enhanced thermal stability compared with the neat epoxy resin. The thermal stability of the epoxy resin nanocomposites was correlated with the dispersion state of the MMT in the epoxy resin matrix.  相似文献   

16.
In this work, a polymeric composite was prepared from ethylene propylene diene monomer (EPDM) and silicone rubber (S) with additives of modified fumed silica (MFS), titanium dioxide (TiO2) and graphene. The dielectric and thermal performances of the EPDM-based composites were studied. An increase in the dielectric constant and AC dielectric breakdown strength was observed for the EPDM rubber composites containing MFS, TiO2, and graphene additives. In addition, the incorporation of the additives resulted7in a significant increase in the thermal stability (~30–50 °C) and thermal conductivity (~7–35%) of the composites. The combination of these various improvements gives suitable performance advantage to the polymeric composite for use in insulating applications.  相似文献   

17.
ABS/Clay nanocomposites were prepared using two ABS with different Acrylonitrile (AN) contents and four montmorillonite clays; a natural clay (CNa+) and three modified clays, Cloisites 10A, 20A, and 30B. The composites were prepared in a twin‐screw extruder. Results were analyzed considering the effect of clay and ABS type, on the clay dispersion, intercalation and exfoliation, as well as on the storage modulus and thermal stability of the nanocomposites. XRD and TEM confirm that when using an ABS with higher AN content (ABS2), a better dispersion and intercalation–exfoliation can be obtained. Cloisites 20A and 30B, respectively the one with greater initial intergallery spacing, but lower polarity and with smaller inter‐gallery spacing but greater polarity, produce the ABS nanocomposites with the greater intergallery spacing. Both ABS polymers have similar storage modulus and Tg and in both cases, the modulus increases with the 4 wt % clay. This increase is greater with the modified clays and slightly greater with the ABS2. Tg, from tan δ, increases very little with the 4 wt % clay, but again, this is slightly greater with ABS2. TGA and flammability tests show that the dispersed clay enhances the thermal stability and that the ABS with higher AN content produces a greater increase in fire retardancy. Tests also show that the better thermal stability and fire retardancy is obtained with the Cloisites 20A or 30B. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 190–200, 2008  相似文献   

18.
This article addresses the synthesis of organically tailored Ni-Al layered double hydroxide (ONi-Al LDH) and its use in the fabrication of exfoliated poly(methyl methacrylate) (PMMA) nanocomposites. The pristine Ni-Al LDH was initially synthesized by co-precipitation method and subsequently modified using sodium dodecyl sulfate to obtain ONi-Al LDH. Nanocomposites of PMMA containing various amounts of modified Ni-Al LDH (3 wt%-7 wt%) were synthesized via solvent blending method to investigate the influence of LDH content on the properties of PMMA matrix. Several characterization methods such as X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), rheological analysis, differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), were employed to examine the structural, viscoelastic and thermal properties of PMMA/OLDH nanocomposites. The results of XRD and TEM examination confirm the formation of partially exfoliated PMMA/OLDH nanocomposites. The FTIR results elucidate that the characteristic bands for both pure PMMA and modified LDH are present in the spectra of PMMA/OLDH nanocomposites. Rheological analyses were carried out to examine the adhesion between polymer matrix and fillers present in the nanocomposite sample. The TGA data indicate that the PMMA nanocomposites exhibit higher thermal stability when compared to pure PMMA. The thermal decomposition temperature of PMMA/OLDH nanocomposites increases by 28 K compared to that of pure PMMA at 15% weight loss as a point of reference. In comparison with pure PMMA, the PMMA nanocomposite containing 7 wt% LDH demonstrates improved glass transition temperature (T g) of around 3 K. The activation energy (E a), reaction orders (n) and reaction mechanism of thermal degradation of PMMA/OLDH nanocomposites were evaluated using different kinetic models. Water uptake capacity of the PMMA/OLDH nanocomposites is less than that of the pure PMMA.  相似文献   

19.
Styrene and montmorillonite organically modified with imidazolium surfactants (MMT) at various alkyl chain lengths (C12, C16 and C18) were used to prepare the corresponding PS/MMT/C12, PS/MMT/C16 and PS/MMT/C18 nanocomposites by in situ polymerization. XRD and TEM analyses evidenced the formation of both intercalated and exfoliated structures. The glass transition temperatures (T g) of nanocomposites, as well as that of neat PS, were obtained by DSC measurements. The thermal degradations were carried out in the scanning mode, in both inert and oxidative environments, and the initial temperatures of decomposition (T i) and the apparent activation energies of degradation (E a) were determined. Due to an oxidative degradation mechanism, the T i and E a values in air atmosphere were lower than those under nitrogen. The results indicated that nanocomposites are more thermally stable than polystyrene, and suggested an increasing degree of exfoliation as a function of alkyl chain length of surfactant, associated with enhancing thermal stability.  相似文献   

20.
《中国化学快报》2022,33(7):3534-3538
Due to the rigid Si-O-Si backbone, silicone rubber (SR) have a widespread application in extreme environment such as high temperature and high-level radiation. However, the radiation stability of SR still does not meet the practical needs in special radiation environments. Herein we prepared epoxy POSS(ePOSS)/SR nanocomposites with excellent thermal stability and radiation resistance. As a physical crosslinking point in the SR, addition of small amount of ePOSS not only enhanced the mechanical properties of the matrix, but also improved its thermal stability greatly due to their good compatibility. ePOSS/SR had higher radiation stability in air than SR owing to the inhibition of radiation oxidation by ePOSS, and the yield of main gaseous radiolysis products (CH4, H2, CO and CO2) of SR and ePOSS/SR nanocomposites was determined. By analyzing the changes of chemical structure, thermal properties and mechanical properties of the ePOSS/SR nanocomposite, combined with the characteristics of gas products after γ-irradiation, the radiation induced crosslinking and degradation mechanism of the nanocomposites was proposed comprehensively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号