首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New plasticization ways based on low molecular plasticizers from citrates family were investigated to improve the ductility of poly(lactide) (PLA). Grafting reactions between anhydride-grafted PLA (MAG-PLA) copolymer with hydroxyl-functionalized citrate plasticizer, i.e. tributyl citrate (TbC), were so-carried out through reactive extrusion. TributylO-acetylcitrate (ATbC) was used as a non-functionalized reference. Both plasticizers drastically decreased the Tg of PLA. However, the grafting reaction of TbC into MAG-PLA revealed a shift of PLA Tg toward higher values. After 6 months of aging, no phase separation was observed. However, plasticizer leaching was noticed in the case of PLA/ATbC materials, leading to the shift of Tg toward lower temperatures. In contrast, no major leaching phenomenon was noticed in PLA/TbC and PLA/MAG-PLA/TbC blends, indicating that the mobility restriction derived from the hydrogen bonding that can occur between PLA and TbC as well as the grafting reaction of TbC into MAG-PLA enabled to reduce leaching phenomena.  相似文献   

2.
Polyamides are semicrystalline polymers that are useful in a wide range of applications in the plastics industry. Some applications require higher flexibility and improved workability of polyamides; thus, a plasticization approach that eases compounding and processing procedures and produces better desired product properties can be utilized. Common plasticizers are high‐boiling liquid esters, but solid plasticizers also have been considered. The present research has focused on plasticization of nylon 66/6 (80/20) copolymer by using selected low molecular weight organic materials. Plasticization of the copolyamide was studied with glycerin mono stearate, benzene sulfonamide, and methyl 4‐hydroxybenzoate as the solid plasticizers and diethylhexyl phthalate as the liquid plasticizer. The materials were prepared and characterized by thermal, mechanical, dynamic, rheological, and morphological properties. The experimental results were supported by simulated polymer and plasticizer interactions using molecular dynamic simulations. Plasticization and antiplasticization phenomena were observed and discussed. The plasticizers were classified by their efficiency in reducing Tg and by modification of the other polyamide properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

A simple reversed-phase HPLC method was developed to identify and quantify plasticizers commonly used with polymers present in sustained or controlled release dosage forms. the plasticizers investigated included triethyl citrate, tributyl citrate, acetyl triethyl citrate, dibutyl sebacate, diethyl phthalate, dibutyl phthalate, and triacetin. the plasticizers were detected at 220 nm, the mobile phase being methanol:water (70:30 v/v%). the peak area response was linear over the studied concentration range of 0.5–5.0 mM/L for triethyl citrate, acetyl triethyl citrate, dibutyl sebacate, and triacetin, and 0.005 ? 0.05 mM/L for diethyl phthalate. the recovery from solvent-cast ethyl cellulose and Eudragit RS 100 films was complete. Two pharmaceutical applications of this assay included the quantitation of plasticizers in polymer-coated sugar beads and a leaching study of a water-soluble plasticizer, triethyl citrate, from polymeric films into simulated intestinal fluids.  相似文献   

4.
A series of proposed plasticizers for poly(vinyl chloride) (PVC), based on poly(?-caprolactone) (PCL) with octanoate and benzoate-terminal groups, were synthesized with various microstructures and molecular weights (MW) and tested for biodegradability as well as for mechanical performance, and leaching resistance in blends with PVC. The plasticization efficiency of each was characterized by measuring the glass transition temperature (Tg) and tensile properties of PCL/PVC blends. The PCL-octanoate plasticizers demonstrated plasticization efficiency similar to di(ethylhexyl) phthalate (DEHP) with the same plasticizer loading. PCL-benzoate/PVC blends had much higher Tgs (∼20 °C higher) compared to PCL-octanoate/PVC and DEHP/PVC blends. Yield stresses were about two times higher for PCL-benzoate/PVC blends compared to PCL-octanoate/PVC and DEHP/PVC blends, reflecting the stiffer nature of such blends. Biodegradation was rapid for all PCL-octanoates, with the exception of linear PCL-octanoates with arm molecular weights >103 g mol−1. Biodegradation rates of PCLs by Rhodococcus rhodocrous were not affected by microstructure for the range of PCL topologies studied (linear versus three or four arms) but were slower for PCLs made from commercial PCL-diols that had a central ether linkage due to the initiator used to make these compounds. Leaching resistance was higher as PCL molecular weight increased and, for pairs of comparable sized species, significantly less PCL-benzoate leached out compared to the PCL-octanoate. For the range of PCL topologies studied, the number of arms did not significantly affect leaching resistance. In summary, both the end group and the molecular weight influenced the leaching resistance of the PCL. PCL-octanoates were comparable plasticizers to DEHP in terms of the mechanical properties examined, and were rapidly degraded by a common soil microorganism.  相似文献   

5.
Room temperature ionic liquids (ILs), based on ammonium, imidazolium and phosphonium cations, were studied as novel plasticizers for poly(vinyl chloride), PVC. All the ILs tested were able to produce flexible PVC. Upon 20 wt% plasticization, some of the ILs lowered the glass transition temperature (Tg) of PVC more than that done by several traditional plasticizers. They showed good thermodynamic compatibility as well. Several ILs showed better leaching and migration resistance than the traditional plasticizers. This was, in particular, a significant observation considering the ongoing controversy regarding the leaching and migration issues of the commonly-used phthalate plasticizers. High temperature and ultraviolet (UV) ray stability of IL-plasticized PVC samples were also studied.  相似文献   

6.
The use of bio-based plasticizers with low toxicity and good compatibility with polyvinyl chloride (PVC) has attracted more attention in the recent years. With bio-based 2, 5-furandicarboxylic acid (FDCA) and butyl oligo-glycol ethers as raw materials, three liquid furan-based plasticizers of di(butyl glycol) furan-2,5-dicarboxylate, di(butyldiglycol) furan-2,5-dicarboxylate and di(butyltriglycol) furan-2,5-dicarboxylate were synthesized by direct esterification. The chemical structure of three plasticizers was characterized with FTIR, 1H NMR and 13C NMR. From DMA measurement, the glass transition temperature (Tg) of the plasticized PVC was decreased gradually when furan-based plasticizers were added to PVC formulation from 30 up to 50 phr. Due to lots of ether bonds in furan-based plasticizers, they expressed over two-fold lower migration in organic solvent compared with the traditional plasticizer diethylhexyl phthalate (DEHP). Through the characterization of elongation at break, hardness and thermal stability, furan-based plasticizers presented the same plasticization properties as DEHP, and had potential industrial application prospects.  相似文献   

7.
A novel photocatalytic polyacrylamide grafted TiO2 (PAM-g-TiO2) nanocomposite was prepared and embedded into a low density polyethylene (LDPE) plastic. Photocatalytic degradation of the LDPE/PAM-g-TiO2 composite film was carried out under ambient conditions under ultraviolet light irradiation. The properties of composite film were compared with those of the pure LDPE film by measuring the changes in weight loss, carbonyl index, molecular weight, tensile strength and elongation at break. PAM-g-TiO2 embedded LDPE showed highly enhanced photocatalytic degradation. Irradiating the LDPE/PAM-g-TiO2 composite film for 520 h under UV light reduced its weight by 39.85% and average molecular weight (Mw) by 94.60%, while that of pure LDPE film was only 1.03% and 69.59%, respectively. The addition of PAM-g-TiO2 brought about the good dispersion of TiO2 in LDPE matrix and improved the hydrophilicity of composite film, which were able to facilitate the degradation of LDPE. The photocatalytic degradation mechanism of the films is briefly discussed.  相似文献   

8.
Internal plasticization of polyvinyl chloride (PVC) using thermal azide‐alkyne Huisgen dipolar cycloaddition between azidized PVC and electron‐poor acetylenediamides incorporating a branched glutamic acid linker resulted in incorporation of four plasticizing moieties per attachment point on the polymer chain. A systematic study incorporating either alkyl or polyethylene glycol esters provided materials with varying degrees of plasticization, with depressed Tg values ranging from ?1 °C to 62 °C. Three interesting trends were observed. First, Tg values of PVC bearing various internal plasticizers were shown to decrease with increasing chain length of the plasticizing ester. Second, branched internal plasticizers bearing triethylene glycol chains had lower Tg values compared to those with similar length long‐chain alkyl groups. Finally, thermogravimetric analysis of these internally plasticized PVC samples revealed that these branched internal plasticizers bearing alkyl chains are more thermally stable than similarity branched plasticizers bearing triethylene glycol units. These internal tetra‐plasticizers were synthesized and attached to PVC‐azide in three simple synthetic steps. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1821–1835  相似文献   

9.
Various amounts of n-alkylbenzenes (Cn: C6H5-CnH2n+1 (n = 3-16)) were doped into poly(methyl methacrylate) (PMMA) films, and the emission and thermal properties of each film were measured in detail together with their solid-state 13C NMR spectra. The aim of the present work was to estimate the size distribution of free volume in amorphous regions of polymer solids heavily doped with plasticizers by using Cn as models of a plasticizer. The excimer fluorescence yields of Cn in PMMA were found to depend on both the amount of Cn and the length of the alkyl chains of Cn, although the fluorescence spectra of all of the Cns in dilute fluid solution were almost the same. The quantitative analysis showed: (1) Cn with n ? 12 induces a phase separation in PMMA, in which almost all of the Cn molecules are in a separated phase, and thus they cannot penetrate regions in which PMMA chains are aggregated. This means that Cn with n ? 12 cannot enlarge the space between PMMA chains. (2) Smaller Cn (n < 11) can enter free volumes between PMMA chains that correspond to their molecular size, but they can enlarge them only to a limited extent. Thus, the amount by which plasticization can increase the free volume of PMMA is limited by the size of the dopant and the inherent free volume of the polymer matrix. (3) The efficiency of excimer formation was found to reveal the maximum amount of Cn that could fit in the free volume of PMMA. Thus our fluorescence measurements showed that PMMA solids that were plasticized to their limit had a free volume that was larger than the volume occupied by all the conformers of C5 and smaller than the volume occupied by almost all the conformers of C12. In conclusion, we were able to obtain information on plasticization and to demonstrate a method of monitoring microenvironments in polymer solids after they have been doped with plasticizers.  相似文献   

10.
A novel method was developed to determine the ultra-low glass transition temperature (Tg) of materials through physical blending via differential scanning calorimetry. According to the Fox equation for polymer blends, a blend of two fully compatible polymers has only one Tg. The single Tg is a function of the Tgs of the two simple polymers. Thus, the ultra-low Tg of one material can be obtained from the Tgs of another polymer and their blends. The error of Tg measurements depends on the measurement error of the Tgs for the blends and another polymer. The method was successfully applied to determine the Tgs of acetyl tributyl citrate (ATBC), tributyl citrate (TBC) and poly(ethylene glycol)s (PEG)s with different molecular weights. The Tgs for ATBC, TBC, PEG-4000 and PEG-800 were ?57.0 °C, ?62.7 °C, ?76.6 °C and ?83.1 °C, respectively. For all the samples, the standard deviation of measurements was less than 3.3 °C, and the absolute error of measurements was theoretically not more than 5.3 °C. These results indicate that this method has acceptable precision and accuracy.  相似文献   

11.
Polylactide (PLA) is a potential candidate for the partial replacement of petrochemical polymers because it is biodegradable and produced from annually renewable resources. Characterized by its high tensile strength, unfortunately the brittleness and rigidity limit its applicability. For a great number of applications such as packaging, fibers, films, etc., it is of high interest to formulate new PLA grades with improved flexibility and better impact properties.In order to develop PLA-based biodegradable packaging, the physico-mechanical properties of commercially available PLA should be modified using biodegradable plasticizers. To this end, PLA was melt-mixed with blends of tributyl citrate and more thermally stable low molecular weight block copolymers based on poly(d,l-lactide) and poly(ethylene glycol) of different molecular weights and topologies. The copolymers have been synthesized using a potassium based catalyst which is expected to be non toxic and were characterized by utilization of TGA, GPC and NMR techniques.The effect of the addition of up to 25 wt% plasticizer on the thermo-mechanical properties of PLA was investigated and the results were correlated with particular attention to the relationship between properties and applications.To confirm the safety of the catalyst used for the preparation of the copolymers, in vitro cytotoxicity tests have been carried out using MTS assay and the results show their biocompatibility in the presence of the fibroblast cells.Compost biodegradation experiments carried out using neat and plasticized PLA have shown that the presence of plasticizers accelerates the degradation of the PLA matrix.  相似文献   

12.
Deuterium labeled tributyl phosphates were synthesized and their solutions in n-dodecane have been investigated for γ-radiolytic degradation up to an absorbed dose of 2,000 kGy from a 60Co source. The performance was compared with undeuterated TBP. Radiolysis extent and pattern of formation of major degradation products, viz. dibutyl hydrogen phosphate and monobutyl dihydrogen phosphate were found to be very similar from deuterated or undeuterated samples. Extraction behavior for UO2 2+ and Pu(IV) was studied after the radiolysis, and the results showed similarity in extraction/stripping behavior for all labeled or unlabeled TBP samples. The isotope effect (k H/k D) observed is minimal in this γ-radiolytic degradation study.  相似文献   

13.
Short-term hydrolytic and enzymatic degradation of poly(ε-caprolactone) (PCL), one series of triblock (PCL/PEO/PCL) and the other of diblock (PCL/PEO) copolymers, with a low content of hydrophilic PEO segments is presented. The effect of the introduction of PEO as the central or lateral segment in the PCL chain on copolymer hydrolysis and biodegradation properties was investigated. FTIR results revealed higher hydrolytic degradation susceptibility of diblock copolymers due to a higher hydrophilicity compared to PCL and triblock copolymers. Enzymatic degradation was tested using cell-free extracts of Pseudomonas aeruginosa PAO1, for two weeks by following the weight loss, changes in surface roughness, and changes in carbonyl and crystallinity index. The results confirmed that all samples underwent enzymatic degradation through surface erosion which was accompanied with a decrease in molecular weights. Diblock copolymers showed significantly higher weight loss and decrease in molecular weight in comparison to PCL itself and triblock copolymers. AFM analysis confirmed significant surface erosion and increase in RMS values. In addition, biodegradation of polymer films was tested in compost model system at 37 °C, where an effective degradation of block copolymers was observed.  相似文献   

14.
This study aims to understand the effects of functional agents such as capping agents, stabilizers, surfactants and additives in shape-controlled synthesis of nanomaterials. The well-defined Pt(100) single crystal surface was used as a model to investigate its interaction with citrate, a capping agent that is often used in shape-controlled synthesis of nanomaterials. It demonstrated that, through a systematic study of electrochemical cyclic voltammetry, the presence of citrate in solution could increase the current peak density of hydrogen adsorption at high potential (j p,L ), while decrease proportionally the current peak density of hydrogen adsorption at low potential (j p,S ). Furthermore, the increase of citrate concentration shifted negatively the peak potentials (E p,L and E p,S ) of both j p,L and j p,S . The results indicated that the interaction of citrate with Pt(100) surface could induce increasing the (100) surface domains of two-dimensional long range order (2D-(100)), and decreasing the (100) surface domains of one-dimensional short range order (1D-(100)). It also revealed that the interaction of citrate with Pt(100) surface could stabilize the 2D-(100) structure. The findings gained in this study implied that the citrate may lead to form stable 2D-(100) domains on Pt nanoparticles upon the shape-controlled synthesis of Pt nanomaterials.  相似文献   

15.
The degradation of poly(lactide-co-p-dioxanone)-based shape memory poly(urethane-urea) (SMPU) in vitro was investigated by observing the changes of the pH value of incubation media, weight loss rate, molecular weight and scanning electron microscopy (SEM) during degradation duration of 12 weeks. Moreover, 1H NMR was used to precisely study the degradation position by calculating the change of characteristic peaks value. The results revealed that the introduction of p-dioxanone (PDO) and -NH-(CO)- and -HN-(CO)-NH- would increase the hydrophilicity of polymer, so the degradation of SMPUs is higher than PDLLA control in the initial time, however, the degradation rate decreased in the anaphase of degradation, which can be attributed to the alkalic -NH2 from the NH2 and -NH-(CO), -NH-(CO)-NH-.  相似文献   

16.
Gases or supercritical fluids (SCF) are widely used in polymer science and engineering, as their dissolution into polymeric materials will alter their inherent thermal properties; including melting and crystallization temperatures (Tm and Tc). One possible method to determine these temperatures, at elevated pressures, is to use a high-pressure differential scanning calorimeter (HP-DSC). However, the elevated pressures used in HP-DSC may result in signal instabilities, limiting the testing window for these pressures. This study presents a novel testing system using dielectric measurements to determine the effects of dissolved gas/SCF on the Tm and Tc of polymers. We have developed an instrument to determine the dielectric properties of both polymer/gas and polymer/SCF mixtures, at elevated pressures and temperatures. Using the change in the measured dielectric constant or loss, Tm and Tc were determined. The effects of hydrostatic pressure and plasticization due to dissolved carbon dioxide (CO2) and Helium (He) on the Tm and Tc of high density polyethylene (HDPE) are presented and discussed. Both Tm and Tc increase with pressure and decrease due to plasticization, i.e., pressure and plasticization are competing variables. The dissolution of He, having a low solubility into HDPE, reveals that pressure is the dominant effect. In contrast, the dissolution of CO2, having a high solubility into HDPE, shows that plasticization is predominant.  相似文献   

17.
The shape and porosity of hematite particles, produced from a forced hydrolysis reaction of acidic FeCl3 solution, were controlled by using Pluronics as nonionic surfactants (0–4 wt.%). Pluronics possess a nominal formula of (PEO) x –(PPO) y –(PEO) x . The effect of Pluronics with low hydrophilicity (PEO contents were less than 50 mol%) was small and provided spherical particles the same as that of the system without Pluronics (control system). However, Pluronics with higher hydrophilicity (PEO contents were over 50 mol%) gave ellipsoidal hematite particles. This effect on the particle morphology was enhanced by an increase in their molecular weight. On the other hand, the Pluronics possessing an opposite nominal formula [(PPO) x –(PEO) y –(PPO) x ] exhibited no effect on the particle shape; it only depressed phase transformation from ?-FeOOH to hematite. Not only the morphology but also the pore size of hematite particles was controlled from nonporous to mesoporous by using Pluronics. The N2 adsorption experiment and t-plot curve analysis revealed that the hematite particles changed from mesoporous to microporous by an increase in the concentration of Pluronics. On the other hand, in the presence of very low amounts of Pluronics molecules (0.1 wt.%), nonporous hematite particles were produced via strong aggregation of PN particles by their hydrogen bonding between hydroxyl and PEO or PPO groups. The dynamic light scattering measurement for the system with Pluronics clarified the existence of polynuclear (PN) particles with a hydrodynamic particle diameter (D a) of ca. 40 nm after these were aged for 6 h. The size of PN particles remained constant at ca. 40 nm during aging time of 12 h~3 days, but the scattering intensity was decreased. This decrease in the scattering intensity reveals that the number of PN particles is reduced by aggregation. The transmission electron microscope, inductively coupled plasma atomic emission spectroscopy, and total organic carbon analysis measurements employed on the systems produced for ellipsoidal particles elucidated that the formation of ellipsoidal hematite particles is attributed to the adsorption of Pluronics on the surfaces of PN and growing hematite particles.  相似文献   

18.
The determination of commercial plasticizers (di-(2-ethylhexyl)adipate (DEHA) and acetyl tributyl citrate (ATBC)) in aqueous solutions is described. The newly proposed technique of applying microwaves to cloud point extracts in order to enable combination with gas chromatographic analysis has been used for this purpose. Both plasticizers were entrapped in the micelles of the non-ionic surfactant Triton X-114 and removed from the bulk phase by centrifugation. Micellization was enhanced by increasing the ionic strength of the solution with concentrated NaCl. Extraction recoveries of the proposed method were over 95% for water and 3% (w/v) aqueous acetic acid and over 85% for 10% (v/v) aqueous ethanol, respectively. The calibration curves obtained, following the proposed methodology have a linear range between 50 and 2000 microg/L for each analyte while the detection limits were as low as 15 and 19 microg/L for DEHA and ATBC, respectively, with an RSD below 5% even for low concentrations. As an analytical demonstration the proposed methodology was applied for the determination of the migration levels of the selected plasticizers from a PVC food packaging film into aqueous simulants.  相似文献   

19.
The polymerization of butadiene in toluene initiated by the NdCl3 · 3TBP-Mg(C4H9)(i-C8H17) (TBP is tributyl phosphate) catalytic system has been studied. It has been shown that the polymerization reaction under study is a nonstationary slowly initiated process. The addition of carbon tetrachloride promotes an increase in the catalytic activity of the system. The products of polymerization have low molecular masses and polydispersity indexes. The content of 1,4-trans-units in the polymer is as high as 95%.  相似文献   

20.
A 50% of cotton–50% of flax fabric was subjected to an enzymatic treatment (bioscouring) in ultrasound for removing the compounds which could negatively affect the further specific technological processes as whitening and dyeing. During the scouring process, some parameters of the fabrics are improved. Even EDTA is usually used as a chelating agent in the pretreatments of the fabrics, recent studies aimed to identify new biodegradable complexing agents. In this study, we present the results obtained for bioscouring treatment of the cellulosic/lignocellulosic fabrics in the presence of sodium citrate as a complexing agent. The treatments were made in 0.1 M phosphate buffer of pH 8 and ultrasound media. The samples were immersed in an aliquot containing the commercial pectinolytic product BEISOL PRO, Denimcol Wash-RGN as a surfactant and sodium citrate or EDTA (ethylenediaminetetraacetic acid). The reactions were conducted by varying the enzyme concentration and action time using a central, rotatable second-order compound program. All the parameters determined after bioscouring [weight loss, hydrophilicity, whiteness index, yellowness index, tensile strength, elongation at break, the relative absorbance (A1731) from FT-IR spectra, color strength (K/S) and color difference (ΔE*ab)] of the investigated samples showed in the case of sodium citrate (an eco-friendly biodegradable compound) treatments better or comparable values to treatments conducted using EDTA (non-biodegradable compound).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号