首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Guanidinium organosulfonates (GSs) are a large and well-explored archetypal family of hydrogen-bonded organic host frameworks that have, over the past 25 years, been regarded as nonporous. Reported here is the only example to date of a conventionally microporous GS host phase, namely guanidinium 1,4-benzenedisulfonate ( p -G2BDS ). p -G2BDS is obtained from its acetone solvate, AcMe@ G2BDS , by single-crystal-to-single-crystal (SC-SC) desolvation, and exhibits a Type I low-temperature/pressure N2 sorption isotherm (SABET=408.7(2) m2 g−1, 77 K). SC-SC sorption of N2, CO2, Xe, and AcMe by p -G2BDS is explored under various conditions and X-ray diffraction provides a measurement of the high-pressure, room temperature Xe and CO2 sorption isotherms. Though p -G2BDS is formally metastable relative to the “collapsed”, nonporous polymorph, np -G2BDS , a sample of p -G2BDS survived for almost two decades under ambient conditions. np -G2BDS reverts to zCO2@ p -G2BDS or yXe@ p -G2BDS (y,z=variable) when pressure of CO2 or Xe, respectively, is applied.  相似文献   

2.
To investigate expression of integrin β1 and its roles on adhesion between different cell cycle hepatocellular carcinoma cell (HCC) and human umbilical vein endothelial cells (HUVEC), the synchronous G1 and S phase HCC were achieved through thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Expression of integrin β1 on hepatocellular carcinoma cells was detected with flow cytometer. Further, the adhesive force of HCC to HUVEC and the role of integrin β1 in this adhesive course were studied by micropipette aspiration technique. The results showed that percentage of each cyclic phases of the controlled HCC (non-synchronous) are: G2+M phase, 11%; G1 phase, 54%; S phase, 36%; the synchronous rates of G1 and S phase HCC amount to 74 and 98%, respectively. The expressive fluorescent intensity of integrin β1 in G1 phase HCC is depressed significantly than the values of S phase and controlled HCC. Accordingly, the adhesive forces of G1 phase HCC to HUVEC was significantly lower than the value of S phase cells (P<0.01), but it has no remarkable difference when compared the adhesive force values of S phase HCC with control; the contribution of integrin β1 was about 50% in the adhesion of HCC to HUVEC. It suggested that HCC would be synchronized preferably in G1 and S phase with thymine-2-deoxyriboside and colchicines, the adhesive molecule integrin β1 expressed in a high lever in HCC and presented differences in vary cell cycle, and integrin β1 played an important roles in adhesion of HCC to HUVEC. Possibly, S phase HCC take a great action in this adhesive course.  相似文献   

3.
Abstract— Does host cell reactivation (HCR) or UV-enhanced reactivation (UVER) of UV-irradiated Herpes simplex virus (UV-HSV) vary during the host mammalian cell cycle? The answer could be useful for interpreting UVER and/or the two-component nature of the UV-HSV survival curve. Procedures were developed for infection of mitotically-synchronized CV-1 monkey kidney cells. All virus survival curves determined at different cell cycle stages had two components with similar D0's and intercepts of the second components. Thus, no single stage of the host cell cycle was responsible for the second component of the virus survival curve. When the cells were UV-irradiated immediately prior to infection, enhanced survival of UV-HSV occurred for cell irradiation and virus infection initiated during late G1/early S phase or late S/early G2 phase but not during early G1 phase. For infection delayed by 24 h after cell irradiation, UVER was found at all investigated times. These results indicate that: (1) HCR is similar at all stages of the host cell cycle; and (2) the “induction” of UVER is not as rapid for cell-irradiation in early G1 phase. This latter observation may be one reason why normal, contact-inhibited cells do not express UVER as rapidly as faster growing, less contact-inhibited cells.  相似文献   

4.
G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. In this work, a thiophene-containing dinuclear ruthenium(II) complex, [Ru2(bpy)4(H2bipt)]4+ {bpy = 2,2′-bipyridine, H2bipt = 2,5-bis[1,10]phenanthrolin[4,5-f]-(imidazol-2-yl)thiophene}, was prepared and the interaction between the complex and human telomeric DNA oligomers 5′-G3(T2AG3)3-3′ (HTG21) has been investigated by UV-Vis, fluorescence and circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assay, polymerase chain reaction (PCR) stop assay, fluorescent intercalator displacement (FID) titrations, Job plot and color reaction studies. The results indicate that the complex can well induce and stabilize the formation of antiparallel G-quadruplex of telomeric DNA in the presence or absence of metal cations, and the ΔTm value of the G-quadruplex DNA treated with the complex was obtained to be 12.8 °C even at levels of 50-fold molar of duplex DNA (calf-thymus DNA), suggesting that the complex exhibits higher G-quadruplex DNA selectivity over duplex DNA. The complex shows high interaction ability with G-quadruplex DNA at (1.17 ± 0.12) × 107 M?1 binding affinity using a 2:1 [complex]/[quadruplex] binding mode ratio. A novel visual method has been developed here for making a distinction between G-quadruplex DNA and duplex DNA by our ruthenium complex binding hemin to form the hemin-G-quadruplex DNAzyme.  相似文献   

5.
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.  相似文献   

6.
This study is aimed at explaining the preference for AT and CG pairings and the possible insertion of other tautomeric DNA base pairs such as GenolT, that respect energetic and steric requirements including at least two hydrogen bonds and 11 ± 0.5Å distance between the 9‐CH3 of purine and 5‐CH3 of pyrimidine. The calculated free energy of formation ΔΔG at the DFT B3LYP/6‐31G*‐PCM/BEM level pointed out the CG and AT pairs as the most favored, followed closely by GenolT, in good agreement with Michaelis–Menten first order kinetics (CG ≈ AT > GenolT). Unusual DNA base pairs complexes such as AG (BEM) and CT (PCM) resulted to be stable, but it is very difficult to assume that they are likely to be included in the double strand DNA. The calculated enthalpy and dipole moments of isolated DNA bases agree well with experiment. The free energy of hydration, ΔGhyd, was found to depend on the electrostatic term, while cavitation‐dispersion components are almost constant. The stability of DNA complexes in water resulted from PCM calculations is markedly influenced by the free energy of hydration. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

7.
Cyclobutyl pyrimidine dimers composed of 5-hydroxymethylcytosine and thymine (5HMC>T dimer for a mutant of T4 ( denV ) that is unable to excise pyrimidine dimers from its DNA. The ability of 5HMC to form dimers suggests that other modified pyrimidines such as 5-methylcytosine can participate in dimer formation, particularly at the UV wavelengths in sunlight likely to be responsible for the induction of skin cancer.  相似文献   

8.
The cell cycle traverse of epidermal basal cells 24 h after in vivo exposure of ultraviolet B (UVB) irradiation was studied by immunochemical staining of incorporated bromodeoxyuridine (BrdU) and bivariate BrdU/DNA flow cytometric analysis. The results were compared with the cell kinetic patterns following topical application of the skin carcinogen methylnitrosourea (MNU) as well as the skin irritant cantharidin. Hairless mice were injected intraperitoneally with BrdU 24 h after treatment of their back skin with either a minimal erythema dose of UVB, or a single application of MNU or cantharidin dissolved in acetone. The cell cycle traverse of the BrdU-labelled cohorts of epidermal basal cells were then followed for the subsequent 12 h. At 6 h after BrdU-injection, when all labelled cells in the control group as well as in the cantharidin group had left the S phase, the bivariate distributions of the UVB-exposed and the MNU group showed that BrdU-positive cells were still present in S phase. Hence, UVB irradiation, similar to the carcinogen MNU, prolonged the S phase duration in some of the basal cells. At 12 h after pulse labelling, however, BrdU-positive cells from UVB-exposed mice were re-entering S phase from G1 phase, indicating that UVB irradiation induced a shortening of the cell cycle time as well, similar to the response observed after cantharidin. The present data can not tell whether these cells also were delayed in S phase. Thus, the cell cycle traverse in hairless mouse epidermis 24 h after in vivo exposure to UVB seemed to be a combination of the cell kinetic effects following chemical skin carcinogens and skin irritants. UVB irradiation induced both a delay in transit time through S phase, probably due to DNA damage and subsequent repair, as well as a reduction in the total cell cycle time consistent with rapid regenerative proliferation.  相似文献   

9.
Three kinds of amide dendritic gelators, G1-C12-G1, G2-C12-G2 and gelator-1, were synthesized, and their self-assemble behavior in methyl methacrylate (MMA) was firstly investigated. The structures of the amide dendritic gelators were confirmed by 1H-NMR and Mass spectra (MS). The gelation ability of the amide dendritic gelators was researched through tube inversion experiment, the results of which showed that different structures led to quite different gelation ability, including gel-sol temperature and critical concentration to form a stable gel. SEM experiments showed that three kinds of gelator formed different gel morphologies in MMA, all of which were nanoscale gel. All the three amide dendritic gelators could not only form stable gel network at certain temperature with different concentrations in MMA, but also in each case, an optically transparent gel was formed, which indicated dendrimers in the MMA had a good compatibility.  相似文献   

10.
Cdk4 Inhibitors: Cyclins and cyclin-dependent kinases (Cdks) play important roles in regulation of the cell cycle. In particular, D-type cyclins, which are activated by rearrangement or amplification in several tumours, associate Cdk4/6. Cyclin D-Cdk4/6 complexes phosphorylate the retinoblastoma protein (pRB) and regulate the cell cycle during G1/S transition. Loss of function or deletion of p16ink4a (endogenous Cdk4/6 specific inhibitor protein) frequently occurs in clinical cancer cells. As a next generation of Cdk inhibitors, selective inhibitors of only one target Cdk are expected to cause cell cycle arrest specifically. Suppression of tumour growth by G1 arrest is thought to reduce the stress for normal cells more than in other phases, because normal cells are usually resting in the G0-G1 phase. Thus, the design of Cdk4 selective inhibitors that cause cell cycle arrest in the G1 phase has been attempted [2] (Structure-based generation of a new class of potent Cdk4 inhibitors: New de novo design strategy and library design, Honma, T. et. al., J. Med. Chem., 44, (2001), 4615-4627). To obtain highly selective and potent Cdk4 inhibitors a structure-based design was performed which consisted of lead generation of a new class of Cdk4 inhibitors based on a Cdk4 homology model, and enhancement of Cdk4 selectivity of lead compounds over Cdk1/2 and other kinases based on the binding modes and structural differences between Cdk4 and other kinases. This methodology was applied to search the Available Chemicals Directory and 382 commercial compounds were selected for screening in cyclin D-Cdk4 assays at concentrations up to 1mM. From this set, 18 compounds were found which possessed an IC50 value of under 500 mM. From these hits, a class of diarylureas were identified with the potential for parallel synthesis follow up to validate the potential of the scaffold and to obtain preliminary SAR. 410 Urea compounds were then designed and synthesised as singles in solution, the design based on the diarylurea hits, and they were screened in a Cdk4 inhibition assay. One of the most potent compounds isolated was (i) which possessed an IC50 value of 34 nM. This work has utilised a structure-based lead generation approach consisting of homology modelling of the target protein, construction of a library of compounds, followed by modification of hits obtained based on predicted binding mode. This strategy has provided potent compounds from a new class of diarylurea Cdk4 inhibitors and may lay the foundation for further work to improve potency in this series.  相似文献   

11.

High pollution, low-productivity, formation of by-products, and costly recovery of the vitamin are the challenges in common vitamin K3 synthesis methods on the industrial scale. These have encouraged us to design and characterize novel magnetic dendrimer nanoparticles based on silica-coated iron oxide (SCIO-(l5/l8)-G2.0) for nano-encapsulation of Pd, Mn, and Co to highly efficiently selectively synthesize vitamin K3. The CHN, BET, ICP, AAS, TEM, FESEM, TGA, DLS, EDS and XPS techniques were employed to intensively identify the obtained dendritic catalysts. Furthermore, the chemical stability of dendritic catalysts and influence of four various experimental factors were assessed by long-term study and response surface methodology analysis, respectively. The characterization results confirmed that all dendritic catalysts have a quasi-spherical morphology with mean size 20–30 nm, which could provide abundant active sites, high specific surface area and also increase the contact efficiency between the active sites and reactants. These results illustrated that the catalytic efficiency (TOF) depend strongly on the chemical structures as well as Lewis sites and natures (SCIO-l8-G2.0-Pd(II)?>?SCIO-l8-G2.0-Co(II)?>?SCIO-l8-G2.0-Mn(II)?>?SCIO-l5-G2.0-Pd(II)).

Graphical abstract
  相似文献   

12.
Three generation of Boc‐protected dendritic‐conjugated polyfluorenes ( Boc‐PFP‐G0‐2 ) were synthesized by Suzuki coupling 1,4‐phenyldiboronic ester with dendritic monomers that were synthesized through generation‐by‐generation approach. The gel permeation chromatography (GPC) analyses showed that the weight‐average molecular weight (Mw) of Boc‐PFP‐G0‐2 was in the range of 11,400–20,400 Da with the polydispersity index (PDI) in the range of 1.32–1.96. Treatment of Boc‐protected polymers with 6 M HCl in dioxane yielded cationic dendritic‐conjugated polyfluorenes ( PFP‐G0‐2 ). They were soluble in common polar solvents such as DMSO, DMF, and water with absorption maxima between 345 and 379 nm. The solutions of PFP‐G0‐2 in water were highly fluorescent with emission maxima between 416 and 425 nm. Because higher generation dendrons could prevent the formation of π‐stacking aggregates of backbones of conjugated polymer, the fluorescence quantum efficiencies (QEs) of PFP‐G0‐2 enhance as the dendritic generation grew. The interactions between 25 mer double‐stranded DNA (dsDNA) and PFP‐G0‐2 were studied using ethidium bromide (EB) as fluorescent probe. The electrostatic bindings of PFP‐G0‐2 with dsDNA/EB complex result in displacement of EB from DNA double helix to the solution accompanying by a quenching of EB fluorescence. The PFP‐G2 with highest generation of dendritic side chains possessed a highest charge density and could form most stable complex with dsDNA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7462–7472, 2008  相似文献   

13.
Sensitization on skin exposed to acute low-dose UVB irradiation separates normal humans into two phenotypically distinct groups: One group, following sensitization on UVB-irradiated skin, develops contact sensitivity, designated UVB resistant (UVB-R) and the second group, following sensitization on UVB-irradiated skin, fails to develop contact sensitivity, designated UVB susceptible (UVB-S). To investigate whether UVB susceptibility in humans is related to antigen-presenting activity in the skin we studied the effect of UVB irradiation on the number and function of the epidermal antigen-presenting cells in volunteers identified as UVB-R and UVB-S. Single cell suspensions of epidermal cells from control skin and skin exposed to 3 minimal erythema doses (MED) of UVB 3 days previously were stained for Langerhans cells (CD1a+HLA-DR+) and epidermal macrophages (CD1a-HLA-DR+). The UVB exposure of the skin significantly decreased the percentage of Langerhans cells (UVB-R: n = 7, P < 0.02, UVB-S: n = 6, P < 0.03) and increased the percentage of epidermal macrophages (UVB-R: n = 7, P < 0.03, UVB-S: n = 6, P < 0.03) however to the same degree in both the UVBR and the UVB-S group. To study the effect on Langerhans cell alloreactivity, epidermal cells were harvested immediately after UVB irradiation. However, in both UVB-R and UVB-S subjects the Langerhans cell alloreactivity was blocked to the same degree immediately after UVB irradiation compared to nonirradiated epidermal cells. To determine the effect of UVB irradiation on epidermal macrophages, epidermal cells were harvested 3 days after UVB irradiation. Irradiated epidermal cells from both UVB-R and UVB-S subjects demonstrated a strong antigen-presenting capacity compared to epidermal cells from control skin leading to activation of T cells that mainly secrete interferon (1FN)-γ and not interleukin (IL)-4. In conclusion we found that UVB susceptibility was not correlated with the number of Langerhans cells or epidermal macrophages in the skin at the same time of sensitization. Neither was it correlated with the capacity of Langerhans cells nor UVB-induced epidermal macrophages to activate T cells in vitro.  相似文献   

14.
The main ionogenic radiolytical degradation products are monobutylphosphate, phosphoric acid, formic, acetic, propionic and butyric acids as the result of gamma-irradiation of two-phase water-dibutylphosphate system. The products were determined using capillary isotachophoresis. According two-phase theory the total (T G(X)) and partial (GI(X) for aqueous phase and GII(X) for organic phase) radiation yields of products and decomposition of DBP in the radiolysis of two phase water-dibutylphosphate systems were calculated from the results.Dedicated to 65th birthday of prof. L. T. Bugaenko  相似文献   

15.
Fluorescence quenching of [Ru(bpy)3]2+ by a series of organic dyes has been investigated by using the steady state fluorescence technique in aqueous medium. The dyes used are anthraquinone dyes: uniblue, acid blue 129, alizarin, alizarin red S and the azo dyes: congo red, sunset yellow, methyl orange, tartrazine, acid orange 63, methyl red and erichrome black T. The quenching of [Ru(bpy)3]2+ was found to obey the Stern-Volmer equation and the corresponding Stern-Volmer plots were linear indicating dynamic quenching. The quenching rate constants (k q) were calculated from the fluorescence data. The mechanism of quenching was discussed on the basis of the quenching rate constants as well as the reduction potential of dyes. The electron transfer mechanism has been proved by the calculation of Gibbs energy changes (ΔG et) by applying the Rehm-Weller equation.  相似文献   

16.
B- and c-series of gangliosides are over-expressed in neuro-ectoderm-related cancers, including breast cancer. It has been shown that GD3 ganglioside is over-expressed in about 50% of invasive ductal breast carcinoma and the GD3 synthase (GD3S) gene displays higher expression among estrogen receptor (ER) negative breast tumors. We previously showed that GD3S expression in MDA-MB-231 breast cancer cells induces the expression of GD2 and increased cell proliferation and migration via a GD2-dependent activation of c-Met receptor. Here, we show that in ER-positive MCF-7 breast cancer cells, GD3S expression resulted in an increase of GD1b, which was associated with a decrease of GM1a and GM2. Meanwhile, GD3S expressing MCF-7 cells exhibited an increased migration without any modification of proliferation rate. Therefore, GD3S expression can result in different modifications of both ganglioside profiles and cell phenotypes depending on breast cell types.  相似文献   

17.
The relative free energy difference (ΔΔGhyd) for the reversible addition of water to two unsaturated molecules is accurately computed using a combination of ab initio quantum mechanical calculations and free energy perturbation methods. Initial attempts to calculate the absolute hydration free energy difference (ΔGhyd) for formaldehyde and trichloroacetaldehyde gave values that differed substantially from experimental results even after inclusion of electron correlation energy contributions using third-order (MP3) and fourth-order (MP4) Møller-Plesset perturbation theory and QCISD(T) correlation methods at the 6-31G** basis set level. Inaccuracies in ΔGhyd were attributed to errors in the calculation of both ΔGgas and ΔΔGsol. Gas phase quantum mechanical free energies (ΔGgas) varied significantly (2–3 kcal/mol) depending on the level of theory. Errors in ΔΔGsol were attributed to slow convergence of the calculations using the thermodynamic cycle perturbation (TCP) method with explicit solvent. These errors were minimized or canceled, however, when relative hydration free energy differences (ΔΔGhyd) were calculated using a combination of ab initio quantum mechanical calculations and free energy perturbation methods. Calculated values for a variety of aldehydes and ketones were consistent with experimental data. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
In vitro anti-proliferative activity of Pinus palustris extract and its purified abietic acid was assessed against different human cancer cell lines (HepG-2, MCF-7 and HCT-116) compared to normal WI-38 cell line. Abietic acid showed more promising IC50 values against MCF-7 cells than pine extract (0.06 µg/mL and 0.11 µM, respectively), with insignificant cytotoxicity toward normal fibroblast WI-38 cells. Abietic acid triggered both G2/M cell arrest and subG0-G1 subpopulation in MCF-7, compared to SubG0-G1 subpopulation arrest only for the extract. It also induced overexpression of key apoptotic genes (Fas, FasL, Casp3, Casp8, Cyt-C and Bax) and downregulation of both proliferation (VEGF, IGFR1, TGF-β) and oncogenic (C-myc and NF-κB) genes. Additionally, abietic acid induced overexpression of cytochrome-C protein. Furthermore, it increased levels of total antioxidants to diminish carcinogenesis and chemotherapy resistance. P. palustris is a valuable source of active abietic acid, an antiproliferative agent to MCF-7 cells through induction of apoptosis with promising future anticancer agency in breast cancer therapy.  相似文献   

19.
Two chiral Cu(II) complexes of [Cu2(R‐L)2](PF6)2·2C2H5OH ( 1 ) and [Cu2(S‐L)2](PF6)2·2C2H5OH ( 2 ) (HL = 2‐(Bis(quinolin‐2‐ylmethyl)amino)‐1‐propanol) were designed and synthesized to serve as chemical nucleases and anticancer drugs. X‐ray crystallography revealed that two complexes contain chiral binuclear cations and PF6? anions. The interaction of two complexes with CT‐DNA was researched via various spectroscopic techniques and viscosity measurement, indicating that the complexes were bound to CT‐DNA by a classical intercalation binding mode. In addition, the two complexes exhibited remarkable DNA cleavage activity with an optimal dosage of 10 μM in the absence of any exogenous oxidant agent. Both of the complexes showed excellent in vitro cytotoxicity on A549 cell lines with IC50 values in the low micromolar range. Moreover, complex 2 could damage DNA of A549 cells into fragmentation and then induced cell apoptosis in a dose‐dependent manner, which was demonstrated by comet assay and Hoechst 33342 staining experiment. Further research showed that complex 2 could also induce G2 and S phase cell cycle arrest.  相似文献   

20.
This study aimed to analyze the phototoxic mechanism and photostability of quinine in human skin cell line A375 under ambient intensities of UVA (320–400 nm). Photosensitized quinine produced a photoproduct 6‐methoxy‐quinoline‐4‐ylmethyl‐oxonium identified through LC‐MS/MS. Generation of 1O2, O2??, and ?OH was measured and further substantiated through their respective quenchers. Photosensitized Quinine (Q) caused degradation of 2‐deoxyguanosine, the most sensitive nucleotide to UV radiation. The intracellular ROS was increased in a concentration‐dependent manner. Significant reduction in metabolic status measured in terms of cell viability (54%) at 25 μg mL?1 was observed through MTT assay. Results of MTT assay accord NRU assay. Single strand DNA breaks and apoptosis were increased significantly (< 0.01) as observed through comet assay and EB/AO double staining. Photosensitized quinine caused cells to arrest in G2 phase of cell cycle and induced apoptosis (5.08%) as revealed through FACS. Real‐Time PCR showed upregulation of p21 (4.56 folds) and p53 (2.811 folds) genes expression. Thus, our study suggests that generation of reactive oxygen species by quinine under ambient intensity of UVA may result into deleterious phototoxic effects among human population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号