首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A tabulated, pseudo-turbulent Probability Density Function (PDF) model for premixed combustion is proposed. The Linear-Eddy Model (LEM) is used to construct the PDFs for a temperature-based progress variable in a premixed, turbulent methane/air V-flame produced by the Cambridge slot burner. As a second case study, the LEM PDFs are similarly compared to PDFs extracted from Direct Numerical Simulations (DNS) of a turbulent premixed flame. LEM demonstrates the ability to reproduce the salient features from experimental and DNS PDFs; moreover, it is able to better capture turbulent effects than previously suggested laminar flamelet PDF models. The Scalar Dissipation Rate (SDR) for premixed combustion is likewise investigated. The stochastic nature of LEM enables it to mimic the overall behaviors of turbulent reactions inexpensively and qualitatively. Crucially, LEM appears to be well suited for the preprocessing tabulation of PDF and SDR models for a number of premixed combustion simulation strategies.  相似文献   

2.
钢筋混凝土空间杆件精细非线性分析模型   总被引:1,自引:0,他引:1  
针对现有钢筋混凝土空间杆件非线性分祈模型进行了评还,应用结构力学方法推导得到了沿秆长配筋分布均匀的钢筋混凝土空间杆件的非线性单元刚度矩阵,建立了应用高斯积分点所在截面的非线性性质描述钢筋混凝土空间杆件非线性的计算过程。对于沿杆长配筋分布不均匀的杆件,根据其实际情况,将其细分为两段或三段沿杆长配筋分布均匀的杆段,以沿杆长配筋分布均匀的钢筋混凝土空间杆件非线性分析模型为基础,建立了沿杆长配筋分布不均匀的空间杆件的非线性分析模型。最后,给出了两个算例。就本文方法及程序的计算结果与模型结构振动台试验结果、常规非线性杆件模型的计算结果进行了比较。  相似文献   

3.
It is shown that by a series of admissible functional transformations the already derived (third-order) strongly nonlinear ordinary differential equation (ODE), describing the elastica buckling analysis of a straight bar under its own weight [Int.J.Solids Struct.24(12), 1179–1192, 1988, The Theory of Elastic Stability, McGraw-Hill, New York, 1961], is reduced to a first-order nonlinear integrodifferential equation. The absence of exact analytic solutions of the reduced equation leads to the conclusion that there are no exact analytic solutions in terms of known (tabulated) functions of this elastica buckling problem. In the limits of large or small values of the slope of the deflected elastica, we expand asymptotically the above integrodifferential equation to nonlinear ODEs of the Emden–Fowler or Abel nonlinear type. In these cases, using the solution methodology recently developed in Panayotounakos [Appl. Math. Lett. 18:155–162, 2005] and Panayotounakos and Kravvaritis [Nonlin. Anal. Real World Appl., 7(2):634–650, 2006], we construct exact implicit analytic solutions in parametric form of these types of equations and thus approximate implicit analytic solutions of the original elastica buckling nonlinear ODE.  相似文献   

4.
A new methodology for modeling and simulation of reactive flows is reported in which a 3D formulation of the Linear Eddy Model (LEM3D) is used as a post-processing tool for an initial RANS simulation. In this hybrid approach, LEM3D complements RANS with unsteadiness and small-scale resolution in a computationally efficient manner. To demonstrate the RANS-LEM3D model, the hybrid model is applied to a lifted turbulent N2-diluted hydrogen jet flame in a vitiated co-flow of hot products from lean H2/air combustion. In the present modeling approach, mean-flow information from RANS provides model input to LEM3D, which returns the scalar statistics needed for more accurate mixing and reaction calculations. Flame lift-off heights and flame structure are investigated in detail, along with other characteristics not available from RANS alone, such as the instantaneous and detailed species profiles and small-scale mixing.  相似文献   

5.
This investigation is concerned with the dynamic response of a circular elastic bar of finite length partially embedded in a half-space of distinct elastic properties. The bar is perpendicular to the free surface of the embedding medium and supports a mass which is harmonically excited in the direction of the bar's longitudinal axis. Two bonding conditions are considered: fully bonded wherein the bar completely adheres to the embedding medium throughout the surface of contact, and loosely bonded wherein the bar is secured through its terminal cross section alone. Of primary importance is the energy dissipation due to the spatial characteristics of the embedding medium and accordingly the system is interpreted as a frequency-dependent spring-dashpot.The determination of the effective spring constant and damping coefficient is achieved by modeling the bar with a one-dimensional theory and using three-dimensional theory for a region which approximates the embedding medium, namely the full half-space. Lamé potentials and Hankel transforms enable a basic half-space problem to be solved which in turn allows integral representations for the spring constant and damping coefficient to be established. For the fully-bonded problem these integral representations involve a bar-force term which must be determined from an integral equation. In both cases the solutions are evaluated numerically over a range of forcing frequencies and for various bar/half-space configurations.  相似文献   

6.
Travelling wave solutions for a second order wave equation of KdV type   总被引:1,自引:0,他引:1  
The theory of planar dynamical systems is used to study the dynamical behaviours of travelling wave solutions of a nonlinear wave equations of KdV type.In different regions of the parametric space,sufficient conditions to guarantee the existence of solitary wave solutions,periodic wave solutions,kink and anti-kink wave solutions are given.All possible exact explicit parametric representations are obtained for these waves.  相似文献   

7.
Sorokin  S.V.  Terentiev  A.V.  Karihaloo  B.L. 《Meccanica》1999,34(5):311-336
The local and global nonlinear dynamics of a two-degree-of-freedom model system is studied. The undeflected model consists of an inverted T formed by three rigid bars, with the tips of the two horizontal bars supported on springs. The springs exhibit an elasto-plastic response, including the Bauschinger effect. The vertical rigid bar is subjected to a conservative (dead) or non-conservative (follower) force having static and periodic components. First, the method of multiple scales is used for the analysis of the local dynamics of the system with elastic springs. The attention is focused at modal interaction phenomena in weak excitation at primary resonance and in hard sub-harmonic excitation. Three different asymptotic expansions are utilised to get a structural response for typical ranges of excitation parameters. Numerical integration of the governing equations is then performed to validate results of asymptotic analysis in each case. A full global nonlinear dynamics analysis of the elasto-plastic system is performed to reveal the role of plastic deformations in the stability of this system. Static 'force-displacement' curves are plotted and the role of plastic deformations in the destabilisation of the system is discussed. Large-amplitude non-linear oscillations of the elasto-plastic system are studied, including the influence of material hardening and of static and sinusoidal components of the applied force. A practical method is proposed for the study of a non-conservative elasto-plastic system as a non-conservative elastic system with an 'equivalent' viscous damping. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
吕嘉琳  牛江川  申永军  杨绍普 《力学学报》2021,53(11):3124-3133
研究了线性动力吸振器复合非线性能量阱对线性镗杆在外部简谐激励下的振动控制. 忽略镗杆系统中的非线性因素, 建立了附加线性动力吸振器和非线性能量阱的镗杆系统的三自由度运动方程, 研究了附加复合式动力吸振器的镗杆系统的受迫振动. 通过平均法得到了附加复合式动力吸振器的镗杆系统的近似解析解, 并利用数值解验证了近似解析解的准确性, 两者具有很好的一致性. 利用近似解析解详细分析了线性动力吸振器和非线性能量阱的参数对镗杆振动抑制性能的影响. 对给定质量的复合式动力吸振器进行了参数优化, 其中线性动力吸振器参数采用H优化方法的近似解析解进行了优化, 非线性能量阱的阻尼利用系统的近似解析解进行了优化. 分析结果表明, 线性动力吸振器与非线性能量阱组合可以有效抑制线性镗杆系统的振动, 而且采用参数优化后的复合式动力吸振器可以获得更好的减振效果. 通过附加非线性能量阱, 不但可以提高线性动力吸振器的振动抑制效果, 而且还可以提高振动控制系统的鲁棒性.   相似文献   

9.
Presented here are three kinematic representations of large rotations for accurate modeling of highly flexible beam-like structures undergoing arbitrarily large three-dimensional elastic deformation and/or rigid-body motion. Different methods of modeling torsional deformation result in different beam theories with different mathematical characteristics. Each of these three geometrically exact beam theories fully accounts for geometric nonlinearities and initial curvatures by using Jaumann strains, exact coordinate transformations, and orthogonal virtual rotations. The derivations are presented in detail, a finite element formulation is included, fully nonlinear governing equations and boundary conditions are presented, and the corresponding form for numerically exact analysis using multiple shooting methods is also derived. These theories are compared in terms of their appropriate application areas, possible singular problems, and easiness for use in modeling and analysis of multibody systems. Nonlinear finite element analysis of a rotating beam and nonlinear multiple shooting analysis of a torsional bar are performed to demonstrate the capability and accuracy of these beam theories.  相似文献   

10.

In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross section, taking into account the effects of geometrical nonlinearity (finite displacement—small strain theory) and secondary twisting moment deformation. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are subjected to the most general axial and torsional (twisting and warping) boundary conditions. The resulting coupling effect between twisting and axial displacement components is also considered and a constant along the bar compressive axial load is induced so as to investigate the dynamic response at the (torsional) postbuckled state. The bar is assumed to be adequately laterally supported so that it does not exhibit any flexural or flexural–torsional behavior. A coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an independent warping parameter is formulated. The resulting equations are further combined to yield a single partial differential equation with respect to the angle of twist. The problem is numerically solved employing the Analog Equation Method (AEM), a BEM based method, leading to a system of nonlinear Differential–Algebraic Equations (DAE). The main purpose of the present contribution is twofold: (i) comparison of both the governing differential equations and the numerical results of linear or nonlinear free or forced vibrations of bars ignoring or taking into account the secondary twisting moment deformation effect (STMDE) and (ii) numerical investigation of linear or nonlinear free vibrations of bars at torsional postbuckling configurations. Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever possible its accuracy.

  相似文献   

11.
Summary Based on one of the simplest mathematical model of a solid, nonlinear interactions between waves in a rectilinear bar are investigated, in order to reveal and display a number of dynamic properties inherent not only to the bar, but also to most weakly nonlinear mechanical systems with internal resonances. The presence of internal resonances in the bar is twofold. Firstly, there exists a slow periodic energy exchange between the longitudinal and the two quasi-harmonic bending waves involved in the resonant triad due to the phase matching, secondly, triple-frequency envelope solitons can be created from the resonant triad with the same modal state. The paper investigates the evolution of waves in the bar with the aim to classify the elementary type of wave triplet resonant interactions and define their existence and coesistence areas.The research described here has been made possible in part by Grant N R9B000 from the International Science Foundation. The authors would like to thank Professor G.A. Maugin for having sent copies of his papers, in particular [23], as well as for his permanent interest in our work.  相似文献   

12.
A key limitation of Reynolds-Average Navier-Stokes (RANS) simulation of mixing and reaction in turbulent flows is the lack of resolution of small-scale structure and associated unsteadiness. Various subgrid models formulated in state space have been developed to complement the RANS solution in this regard. We here introduce a physical-space formulation that captures unsteady advective and diffusive processes at all scales of the turbulent flow. The approach is a 3D construction based on the Linear Eddy Model (LEM), involving three orthogonally intersecting arrays of 1D LEM domains, and coupled so as to capture the 3D character of fluid trajectories. To illustrate the model performance of the 3D LEM-based formulation, here termed LEM3D, multi-stream mixing in a turbulent round jet is simulated using measured mean-flow properties as input. Comparison to scalar cross-correlation coefficients and other measured properties of this mixing configuration indicate that the LEM3D approach, in conjunction with flow properties that are provided by steady-state models, is a useful representation of complex turbulent mixing processes that would otherwise be difficult to capture within a steady-state CFD framework.  相似文献   

13.
采用?75 mm大口径SHPB系统进行了钢纤维体积率为0%、0.75%、1.5%三种混凝土材料动态性能实验,得出了不同钢纤维含量、不同应变率下的材料应力-应变关系曲线,实验结果表明:随着纤维含量及应变率的增加,钢纤维混凝土材料的峰值应变、峰值应力都随之提高,并在峰值应力之后出现应力的应变软化现象。以此实验结果为基础,提出了一种依赖于应变和应变率相关函数的新型非线性黏塑性动态本构关系,并通过对实验曲线的三步逐次最小二乘优选模拟,得到了相应的材料参数。结果表明,该本构关系对实验数据的模拟效果较好。  相似文献   

14.
Mechanical properties of lattice grid composites   总被引:1,自引:0,他引:1  
An equivalent continuum method only considering the stretching deformation of struts was used to study the in-plane stiffness and strength of planar lattice grid com- posite materials. The initial yield equations of lattices were deduced. Initial yield surfaces were depicted separately in different 3D and 2D stress spaces. The failure envelope is a polyhedron in 3D spaces and a polygon in 2D spaces. Each plane or line of the failure envelope is corresponding to the yield or buckling of a typical bar row. For lattices with more than three bar rows, subsequent yield of the other bar row after initial yield made the lattice achieve greater limit strength. The importance of the buckling strength of the grids was strengthened while the grids were relative sparse. The integration model of the method was used to study the nonlinear mechanical properties of strain hardening grids. It was shown that the integration equation could accurately model the complete stress-strain curves of the grids within small deformations.  相似文献   

15.
16.
We consider generalized one-dimensional Maxwell and Kelvin-Voigt models of viscoelastic materials in which the properties of elastic and viscous elements are determined by the corresponding secant moduli and viscosity coefficients, which are functions of the parameters determined by the deformation process. In contrast to the nonlinear endochronic theory of aging viscoelastic materials (NETAVEM), in which one and the same aging function is used to describe the properties of all elastic elements and one and the same viscosity function is used to describe the properties of all viscous elements [1, 2], it is assumed that the type of these functions is distinct for each elementary model. For the generalized Maxwell and Kelvin-Voigt models under study, we obtain representations of the specific work of internal forces as the sum of four terms of different physical meaning. There representations are similar to those given in [1, 2] for NETAVEM. An example of construction of viscoelasticity constitutive relations containing two aging functions and one viscosity function is given for a material whose properties are sensitive to the strain rate. The simultaneous use of several aging and viscosity functions to describe the properties of structure elements of the model and the use of several components of specific work as arguments of these functions allows us to extend the scope of the models under study.  相似文献   

17.
Mixing and chemistry interactions in a H2/N2 jet flame into a vitiated coflow are considered key factors affecting autoignition. A 1-D numerical model under laminar flow condition first is simulated to reveal the effects of fuel species, pressure, and coflow properties on the autoignition with and without the consideration of preferential diffusion among species. Proper laminar reference autoignition delays are proposed and examined for different diffusion models. Next, the reference autoignition delays defined from laminar simulations are investigated in an example turbulent flow using the Linear Eddy Model (LEM). LEM is used to model the effect of turbulent mixing on autoignition, where we specifically investigate if the effect of turbulence on autoignition can be classified in two regimes, which are dependent on a proper reference laminar autoignition delay and turbulence time scale. The trend of the effect of differential diffusion on autoignition versus turbulence Reynolds is simulated and analyzed, and several tentative conclusions are drawn.  相似文献   

18.
Various types of nonlinear waves propagating along a viscoelastic bar are considered. The rheological equation of state has strong physical and geometric nonlinearities, and nonisothermal effects are included. Both weak (isentropic) and shock waves of loading and unloading are investigated. It is shown that, for certain rubber-like materials, stable shock waves of extension can exist along with the shock waves of compression at very large strains. We then consider the strike of a viscoelastic bar of finite length against a rigid obstacle. Numerical solutions to this problem illustrate the influence of stress relaxation on nonlinear wave processes. A model for sticking and bouncing off is formulated and the mass-averaged velocity of the bar at the moment when it bounces off the obstacle is calculated.  相似文献   

19.
G-equations are well-known front propagation models in turbulent combustion which describe the front motion law in the form of local normal velocity equal to a constant (laminar speed) plus the normal projection of fluid velocity. In level set formulation, G-equations are Hamilton–Jacobi equations with convex (L 1 type) but non-coercive Hamiltonians. Viscous G-equations arise from either numerical approximations or regularizations by small diffusion. The nonlinear eigenvalue [`(H)]{\bar H} from the cell problem of the viscous G-equation can be viewed as an approximation of the inviscid turbulent flame speed s T. An important problem in turbulent combustion theory is to study properties of s T, in particular how s T depends on the flow amplitude A. In this paper, we study the behavior of [`(H)]=[`(H)](A,d){\bar H=\bar H(A,d)} as A → + ∞ at any fixed diffusion constant d > 0. For cellular flow, we show that
$\bar H(A,d)\leqq C(d) \quad \text{for all}\ d >0 ,$\bar H(A,d)\leqq C(d) \quad \text{for all}\ d >0 ,  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号