共查询到20条相似文献,搜索用时 15 毫秒
1.
Fabio Cesar Gozzo Marcos N. Eberlin 《Journal of the American Society for Mass Spectrometry》1995,6(7):554-563
Ion-molecule reactions of the mass-selected distonic radical cation +CH2-O-CH 2 · (1) with several heterocyclic compounds have been investigated by multiple stage mass spectro- metric experiments performed in a pentaquadrupole mass spectrometer. Reactions with pyridine, 2-, 3-, and 4-ethyl, 2-methoxy, and 2-n-propyl pyridine occur mainly by transfer of CH 2 +· to the nitrogen, which yields distonic N-methylene-pyridinium radical cations. The MS3 spectra of these products display very characteristic collision-induced dissociation chemistry, which is greatly affected by the position of the substituent in the pyridine ring. Ortho isomers undergo a δ-cleavage cyclization process induced by the free-radical character of the N-methylene group that yields bicyclic pyridinium cations. On the other hand, extensive CH 2 +· transfer followed by rapid hydrogen atom loss, that is, a net CH+ transfer, occurs not to the heteroatoms, but to the aromatic ring of furan, thiophene, pyrrole, and N-methyl pyrrole. The reaction proceeds through five- to six-membered ring expansion, which yields the pyrilium, thiapyrilium, N-protonated, and N-methylated pyridine cations, respectively, as indicated by MS3 scans. Ion 1 fails to transfer CH 2 +· to tetrahydrofuran, whereas a new α-distonic sulfur ion is formed in reactions with tetrahydrothiophene. Unstable N-methylene distonic ions, likely formed by transfer of CH 2 +· to the nitrogen of piperidine and pyrrolidine, undergo rapid fragmentation by loss of the α-NH hydrogen to yield closed-shell immonium cations. The most thermodynamically favorable products are formed in these reactions, as estimated by ab initio calculations at the MP2/6-31G(d,p)//6-31G(d,p) + ZPE level of theory. 相似文献
2.
3.
Hans Bock Peter Hänel Wolfgang Kaim Ulrike Lechner-Knoblauch 《Tetrahedron letters》1985,26(42):5115-5118
The electron-rich tetrakis(dimethylamino)-p-benzoquinone exhibits a low first ionization energy of only 7.1 eV and can be oxidized electrochemically at +0.25 V vs. SCE to its purple radical cation, whose spin population differs considerably from that of the corresponding semiquinone radical anion. 相似文献
4.
Sekiguchi A Fukawa T Lee VY Nakamoto M 《Journal of the American Chemical Society》2003,125(31):9250-9251
The first stable stannyl radical (tBu2MeSi)3Sn* (1) has been synthesized by the reaction of tBu2MeSiNa with SnCl2-dioxane in diethyl ether. The X-ray crystal structure and electron paramagnetic resonance (EPR) data of this radical show that 1 has a planar geometry, being a pi-radical in both the solid and the liquid states. One-electron oxidation of 1 with Ph3C+.B(C6F5)4- in benzene quantitatively produced the corresponding cation (tBu2MeSi)3Sn+.B(C6F5)4- (2), representing the stable free stannylium ion that has been fully characterized by X-ray analysis and NMR data. Being free, 2 features a record downfield shifted resonance for stannylium ions: +2653 ppm. 相似文献
5.
The potential energy surface for the [CH5N]+˙ system has been investigated using ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence-electron correlation. Two [CH5N]+˙ isomers can be distinguished: the well known methylamine radical cation, [CH3NH2]+˙, and the less familiar methylenammonium radical cation, [CH2NH3]+˙. The latter is calculated to lie 8 kJ mol?1 lower in energy. A substantial barrier (176 kJ mol?1) is predicted for rearrangement of [CH2NH3]+˙ to [CH3NH2]+˙. In addition, a large barrier (202 kJ mol?1) is found for loss of a hydrogen radical from [CH2NH3]+˙ via direct N—H bond cleavage to give the aminomethyl cation [CH2NH2]+. These results are consistent with the existence of the methylenammonium ion [CH2NH3]+˙ as a stable observable species. The barrier to loss of a hydrogen radical from [CH3NH2]+˙ is calculated to be 140 kJ mol?1. 相似文献
6.
7.
Hiraoka S Okamoto T Kozaki M Shiomi D Sato K Takui T Okada K 《Journal of the American Chemical Society》2004,126(1):58-59
A stable radical-substituted radical ion with strongly ferromagnetic intramolecular interaction (J) between the radical and radical ion sites is an attractive spin building block of organic magnets. We prepared 2-nitronyl nitroxide-substituted 5,10-diphenyl-5,10-dihydrophenazine radical cation, 1+. The 1+ salt was stable under aerated conditions at room temperature and had a large J/kB value (>/=+700 K). 相似文献
8.
9.
Widjaja F Jin Z Nash JJ Kenttämaa HI 《Journal of the American Chemical Society》2012,134(4):2085-2093
To directly compare the reactivity of positively charged carbon-centered aromatic σ-radicals toward methanol in solution and in the gas phase, the 2-, 3-, and 4-dehydropyridinium cations (distonic isomers of the pyridine radical cation) were generated by ultraviolet photolysis of the corresponding iodo precursors in a mixture of water and methanol at varying pH. The reaction mixtures were analyzed by using liquid chromatography/mass spectrometry. Hydrogen atom abstraction was the only reaction observed for the 3- and 4-dehydropyridinium cations (and pyridines) in solution. This also was the major reaction observed earlier in the gas phase. Depending on the pH, the hydrogen atom can be abstracted from different molecules (i.e., methanol or water) and from different sites (in methanol) by the 3- and 4-dehydropyridinium cations/pyridines in solution. In the pH range 1-4, the methyl group of methanol is the main hydrogen atom donor site for both 3- and 4-dehydropyridinium cations (just like in the gas phase). At higher pH, the hydroxyl groups of water and methanol also act as hydrogen atom donors. This finding is rationalized by a greater abundance of the unprotonated radicals that preferentially abstract hydrogen atoms from the polar hydroxyl groups. The percentage yield of hydrogen atom abstraction by these radicals was found to increase with lowering the pH in the pH range 1.0-3.2. This pH effect is rationalized by polar effects: the lower the pH, the greater the fraction of protonated (more polar) radicals in the solution. This finding is consistent with previous results obtained in the gas phase and suggests that gas-phase studies can be used to predict solution reactivity, but only as long as the same reactive species is studied in both experiments. This was found not to be the case for the 2-iodopyridinium cation. Photolysis of this precursor in solution resulted in the formation of two major addition products, 2-hydroxy- and 2-methoxypyridinium cations, in addition to the hydrogen atom abstraction product. These addition products were not observed in the earlier gas-phase studies on 2-dehydropyridinium cation. Their observation in solution is explained by the formation of another reactive intermediate, the 2-pyridylcation, upon photolysis of 2-iodopyridinium cation (and 2-iodopyridine). The same intermediate was observed in the gas phase but it was removed before examining the reactions of the desired radical, 2-dehydropyridinium cation (which cannot be done in solution). 相似文献
10.
The gas phase reactions of the bridgehead 3-carboxylato-1-adamantyl radical anion were observed with a series of neutral reagents using a modified electrospray ionisation linear ion trap mass spectrometer. This distonic radical anion was observed to undergo processes suggestive of radical reactivity including radical-radical combination reactions, substitution reactions and addition to carbon-carbon double bonds. The rate constants for reactions of the 3-carboxylato-1-adamantyl radical anion with the following reagents were measured (in units 10(-12) cm(3) molecule(-1) s(-1)): (18)O(2) (85 +/- 4), NO (38.4 +/- 0.4), I(2) (50 +/- 50), Br(2) (8 +/- 2), CH(3)SSCH(3) (12 +/- 2), styrene (1.20 +/- 0.03), CHCl(3) (H abstraction 0.41 +/- 0.06, Cl abstraction 0.65 +/- 0.1), CDCl(3) (D abstraction 0.035 +/- 0.01, Cl abstraction 0.723 +/- 0.005), allyl bromide (Br abstraction 0.53 +/- 0.04, allylation 0.25 +/- 0.01). Collision rates were calculated and reaction efficiencies are also reported. This study represents the first quantitative measurement of the gas phase reactivity of a bridgehead radical and suggests that distonic radical anions are good models for the study of their elusive uncharged analogues. 相似文献
11.
In-situ ESR/UV-vis-NIR spectroelectrochemistry was implemented to probe the spin state of the radical cation of a non-IPR cluster-fullerene Sc(3)N@C(68), which represents the first study on the stable paramagnetic cation of an endohedral fullerene. 相似文献
12.
13.
Rodrigues T dos Santos CG Riposati A Barbosa LR Di Mascio P Itri R Baptista MS Nascimento OR Nantes IL 《The journal of physical chemistry. B》2006,110(25):12257-12265
This work characterizes, for the first time, the photochemical behavior of the antipsychotic drugs thioridazine (TR), trifluoperazine (TFP), and fluphenazine (FP) influenced by the aggregation state of the molecules. Samples of monomeric and aggregated forms of phenothiazines were submitted to 20 min of irradiation at 254 nm for intervals of 1, 5, 10, 15, 20, or 25 days. In high phenothiazine concentrations, the irradiation led to the appearance of absorbance bands in the visible region peaking at 633 nm for TR and 509 nm for FP and TFP. In the dark, at room temperature and at 4 degrees C, these bands disappeared, after approximately 15 and approximately 60 min, respectively, but reappeared after a new irradiation session. These visible bands were assigned to stable cation radicals that were characterized by direct EPR measurements and by flash photolysis. Photogenerated stable cation radicals in the phenothiazine aggregates at room temperature are formed probably due to the stacking of the thiazine phenyl moieties. For the monomeric forms of phenothiazines, the spectral changes observed during the irradiation suggested the formation of sulfoxide and hydroxylated derivates. Oxidized derivates were detected by mass spectrometry of the aggregated forms of phenothiazines (>100 microM) only in the samples irradiated for more than 20 days. In contrast, monomeric phenothiazines were totally converted to the oxidized forms after 20 min of irradiation. Surface tension measurements of phenothiazines revealed that, in concentrations above 100 microM, the drugs formed aggregates. In the case of TR, small-angle X-ray scattering measurements indicated that this compound forms large lamellar-like aggregates in aqueous solutions. 相似文献
14.
15.
Margot W. van Amsterdam Herman W. Zappey Steen Ingemann Nico M. M. Nibbering 《Journal of mass spectrometry : JMS》1993,28(1):30-36
The α-distonic sulphur-containing ion $ {}^ \cdot {\rm CH}_2 \mathop {\rm S}\limits^ + \left({{\rm CH}_3 } \right)_2 $ has been generated by transfer of CH from ionized oxirane to dimethyl thioether and distinguished from the molecular ion of ethyl methyl thioether by collision induced dissociation (CID) experiments. In particular, the α-distonic ion expels CH2 to a minor extent following collision, whereas the molecular ion of ethyl methyl thioether does not undergo this reaction. The metastable C3H8S+˙ ions formed by CH transfer to dimethyl thioether and ionization of ethyl methyl thioether decompose by competing losses of CH3R˙, CH4 and C2H4. The elimination of ethene is taken as evidence for isomerization of the α-distonic ion to the molecular ion of ethyl methyl thioether prior to spontaneous dissociation. Evidence for the formation of stable α-distonic sulphur-containing ions by transfer of CH from ionized oxirane to methyl phenyl thioether has not been obtained. The collision-induced and spontaneous reactions of the ions formed by CH transfer to methyl phenyl thioether indicate that a mixture of the radical cations of CH3C6H4SCH3, C6H5SCH2CH3 and C6H5CH2SCH3 is generated implying that attack on the phenyl group occurs in addition to a formal insertion of a methylene entity in a C? S bond. 相似文献
16.
TGA, DTA and DSC analyses indicate that benzotriazole is significantly more stable thermally than 1,2,3-triazole. 相似文献
17.
The energies of the four ∏-states of tetraacetylene radical cation have been determined by He(I) photoelectron spectroscopy. 相似文献
18.
Momoh PO Abrash SA Mabrouki R El-Shall MS 《Journal of the American Chemical Society》2006,128(38):12408-12409
Since the discovery of acetylene and benzene in protoplanetary nebulae under powerful ultraviolet ionizing radiation, efforts have been made to investigate the polymerization of ionized acetylene. Here we report the efficient formation of benzene ions within gas-phase ionized acetylene clusters (C2H2)n+ with n = 3-60. The results from experiments, which use mass-selected ion mobility techniques, indicate that the (C2H2)3+ ion has unusual stability similar to that of the benzene cation; its primary fragment ions are similar to those reported from the benzene cation, and it has a collision cross section of 47.4 A2 in helium at 300 K, similar to the value of 47.9 A2 reported for the benzene cation. In other words, (C2H2)3+ structurally looks like benzene, it has stability similar to that of benzene, it fragments such as benzene, therefore, it must be benzene! 相似文献
19.
Diene triplets in predominantly the - conformation are formed efficiently by back electron transfer to diene cation radicals in DMF and dichloromethane. 相似文献