首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigate the Semidefinite Programming based sums of squares (SOS) decomposition method, designed for global optimization of polynomials, in the context of the (Maximum) Satisfiability problem. To be specific, we examine the potential of this theory for providing tests for unsatisfiability and providing MAX-SAT upper bounds. We compare the SOS approach with existing upper bound and rounding techniques for the MAX-2-SAT case of Goemans and Williamson [Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. Assoc. Comput. Mach. 42(6) (1995) 1115-1145] and Feige and Goemans [Approximating the value of two prover proof systems, with applications to MAX2SAT and MAXDICUT, in: Proceedings of the Third Israel Symposium on Theory of Computing and Systems, 1995, pp. 182-189] and the MAX-3-SAT case of Karloff and Zwick [A 7/8-approximation algorithm for MAX 3SAT? in: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, Miami Beach, FL, USA, IEEE Press, New York, 1997], which are based on Semidefinite Programming as well. We prove that for each of these algorithms there is an SOS-based counterpart which provides upper bounds at least as tight, but observably tighter in particular cases. Also, we propose a new randomized rounding technique based on the optimal solution of the SOS Semidefinite Program (SDP) which we experimentally compare with the appropriate existing rounding techniques. Further we investigate the implications to the decision variant SAT and compare experimental results with those yielded from the higher lifting approach of Anjos [On semidefinite programming relaxations for the satisfiability problem, Math. Methods Oper. Res. 60(3) (2004) 349-367; An improved semidefinite programming relaxation for the satisfiability problem, Math. Programming 102(3) (2005) 589-608; Semidefinite optimization approaches for satisfiability and maximum-satisfiability problems, J. Satisfiability Boolean Modeling Comput. 1 (2005) 1-47].We give some impression of the fraction of the so-called unit constraints in the various SDP relaxations. From a mathematical viewpoint these constraints should be easily dealt within an algorithmic setting, but seem hard to be avoided as extra constraints in an SDP setting. Finally, we briefly indicate whether this work could have implications in finding counterexamples to uncovered cases in Hilbert's Positivstellensatz.  相似文献   

3.
In this paper we study semidefinite programming (SDP) models for a class of discrete and continuous quadratic optimization problems in the complex Hermitian form. These problems capture a class of well-known combinatorial optimization problems, as well as problems in control theory. For instance, they include the MAX-3-CUT problem where the Laplacian matrix is positive semidefinite (in particular, some of the edge weights can be negative). We present a generic algorithm and a unified analysis of the SDP relaxations which allow us to obtain good approximation guarantees for our models. Specifically, we give an -approximation algorithm for the discrete problem where the decision variables are k-ary and the objective matrix is positive semidefinite. To the best of our knowledge, this is the first known approximation result for this family of problems. For the continuous problem where the objective matrix is positive semidefinite, we obtain the well-known π /4 result due to Ben-Tal et al. [Math Oper Res 28(3):497–523, 2003], and independently, Zhang and Huang [SIAM J Optim 16(3):871–890, 2006]. However, our techniques simplify their analyses and provide a unified framework for treating those problems. In addition, we show for the first time that the gap between the optimal value of the original problem and that of the SDP relaxation can be arbitrarily close to π /4. We also show that the unified analysis can be used to obtain an Ω(1/ log n)-approximation algorithm for the continuous problem in which the objective matrix is not positive semidefinite. This research was supported in part by NSF grant DMS-0306611.  相似文献   

4.
The matching problem between two adjacency matrices can be formulated as the NP-hard quadratic assignment problem (QAP). Previous work on semidefinite programming (SDP) relaxations to the QAP have produced solutions that are often tight in practice, but such SDPs typically scale badly, involving matrix variables of dimension \(n^2\) where n is the number of nodes. To achieve a speed up, we propose a further relaxation of the SDP involving a number of positive semidefinite matrices of dimension \(\mathcal {O}(n)\) no greater than the number of edges in one of the graphs. The relaxation can be further strengthened by considering cliques in the graph, instead of edges. The dual problem of this novel relaxation has a natural three-block structure that can be solved via a convergent Alternating Direction Method of Multipliers in a distributed manner, where the most expensive step per iteration is computing the eigendecomposition of matrices of dimension \(\mathcal {O}(n)\). The new SDP relaxation produces strong bounds on quadratic assignment problems where one of the graphs is sparse with reduced computational complexity and running times, and can be used in the context of nuclear magnetic resonance spectroscopy to tackle the assignment problem.  相似文献   

5.
We consider semidefinite programs (SDPs) with equality constraints. The variable to be optimized is a positive semidefinite matrix X of size n. Following the Burer-Monteiro approach, we optimize a factor Y of size n × p instead, such that X = YYT. This ensures positive semidefiniteness at no cost and can reduce the dimension of the problem if p is small, but results in a nonconvex optimization problem with a quadratic cost function and quadratic equality constraints in Y. In this paper, we show that if the set of constraints on Y regularly defines a smooth manifold, then, despite nonconvexity, first- and second-order necessary optimality conditions are also sufficient, provided p is large enough. For smaller values of p, we show a similar result holds for almost all (linear) cost functions. Under those conditions, a global optimum Y maps to a global optimum X = YYT of the SDP. We deduce old and new consequences for SDP relaxations of the generalized eigenvector problem, the trust-region subproblem, and quadratic optimization over several spheres, as well as for the Max-Cut and Orthogonal-Cut SDPs, which are common relaxations in stochastic block modeling and synchronization of rotations. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
We focus in this paper the problem of improving the semidefinite programming (SDP) relaxations for the standard quadratic optimization problem (standard QP in short) that concerns with minimizing a quadratic form over a simplex. We first analyze the duality gap between the standard QP and one of its SDP relaxations known as “strengthened Shor’s relaxation”. To estimate the duality gap, we utilize the duality information of the SDP relaxation to construct a graph G ?. The estimation can be then reduced to a two-phase problem of enumerating first all the minimal vertex covers of G ? and solving next a family of second-order cone programming problems. When there is a nonzero duality gap, this duality gap estimation can lead to a strictly tighter lower bound than the strengthened Shor’s SDP bound. With the duality gap estimation improving scheme, we develop further a heuristic algorithm for obtaining a good approximate solution for standard QP.  相似文献   

7.
We investigate the relationships between various sum of squares (SOS) and semidefinite programming (SDP) relaxations for the sensor network localization problem. In particular, we show that Biswas and Ye’s SDP relaxation is equivalent to the degree one SOS relaxation of Kim et al. We also show that Nie’s sparse-SOS relaxation is stronger than the edge-based semidefinite programming (ESDP) relaxation, and that the trace test for accuracy, which is very useful for SDP and ESDP relaxations, can be extended to the sparse-SOS relaxation.  相似文献   

8.
In this paper, we introduce a new class of nonsmooth convex functions called SOS-convex semialgebraic functions extending the recently proposed notion of SOS-convex polynomials. This class of nonsmooth convex functions covers many common nonsmooth functions arising in the applications such as the Euclidean norm, the maximum eigenvalue function and the least squares functions with ? 1-regularization or elastic net regularization used in statistics and compressed sensing. We show that, under commonly used strict feasibility conditions, the optimal value and an optimal solution of SOS-convex semialgebraic programs can be found by solving a single semidefinite programming problem (SDP). We achieve the results by using tools from semialgebraic geometry, convex-concave minimax theorem and a recently established Jensen inequality type result for SOS-convex polynomials. As an application, we show that robust SOS-convex optimization proble ms under restricted spectrahedron data uncertainty enjoy exact SDP relaxations. This extends the existing exact SDP relaxation result for restricted ellipsoidal data uncertainty and answers an open question in the literature on how to recover a robust solution of uncertain SOS-convex polynomial programs from its semidefinite programming relaxation in this broader setting.  相似文献   

9.
In this paper, we propose a mechanism to tighten Reformulation-Linearization Technique (RLT) based relaxations for solving nonconvex programming problems by importing concepts from semidefinite programming (SDP), leading to a new class of semidefinite cutting planes. Given an RLT relaxation, the usual nonnegativity restrictions on the matrix of RLT product variables is replaced by a suitable positive semidefinite constraint. Instead of relying on specific SDP solvers, the positive semidefinite stipulation is re-written to develop a semi-infinite linear programming representation of the problem, and an approach is developed that can be implemented using traditional optimization software. Specifically, the infinite set of constraints is relaxed, and members of this set are generated as needed via a separation routine in polynomial time. In essence, this process yields an RLT relaxation that is augmented with valid inequalities, which are themselves classes of RLT constraints that we call semidefinite cuts. These semidefinite cuts comprise a relaxation of the underlying semidefinite constraint. We illustrate this strategy by applying it to the case of optimizing a nonconvex quadratic objective function over a simplex. The algorithm has been implemented in C++, using CPLEX callable routines, and two types of semidefinite restrictions are explored along with several implementation strategies. Several of the most promising lower bounding strategies have been implemented within a branch-and-bound framework. Computational results indicate that the cutting plane algorithm provides a significant tightening of the lower bound obtained by using RLT alone. Moreover, when used within a branch-and-bound framework, the proposed lower bound significantly reduces the effort required to obtain globally optimal solutions.  相似文献   

10.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

11.
The low-rank semidefinite programming problem LRSDPr is a restriction of the semidefinite programming problem SDP in which a bound r is imposed on the rank of X, and it is well known that LRSDPr is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDPr and prove the optimal convergence of a slight variant of the successful, yet experimental, algorithm of Burer and Monteiro [5], which handles LRSDPr via the nonconvex change of variables X=RRT. In addition, for particular problem classes, we describe a practical technique for obtaining lower bounds on the optimal solution value during the execution of the algorithm. Computational results are presented on a set of combinatorial optimization relaxations, including some of the largest quadratic assignment SDPs solved to date.This author was supported in part by NSF Grant CCR-0203426.This author was supported in part by NSF Grants CCR-0203113 and INT-9910084 and ONR grant N00014-03-1-0401.  相似文献   

12.
This paper explores new connections between the satisfiability problem and semidefinite programming. We show how the process of resolution in satisfiability is equivalent to a linear transformation between the feasible sets of the relevant semidefinite programming problems. We call this transformation semidefinite programming resolution, and we demonstrate the potential of this novel concept by using it to obtain a direct proof of the exactness of the semidefinite formulation of satisfiability without applying Lasserre’s general theory for semidefinite relaxations of 0/1 problems. In particular, our proof explicitly shows how the exactness of the semidefinite formulation for any satisfiability formula can be interpreted as the implicit application of a finite sequence of resolution steps to verify whether the empty clause can be derived from the given formula.  相似文献   

13.
The hypergraph matching problem is to find a largest collection of disjoint hyperedges in a hypergraph. This is a well-studied problem in combinatorial optimization and graph theory with various applications. The best known approximation algorithms for this problem are all local search algorithms. In this paper we analyze different linear and semidefinite programming relaxations for the hypergraph matching problem, and study their connections to the local search method. Our main results are the following:
  • We consider the standard linear programming relaxation of the problem. We provide an algorithmic proof of a result of Füredi, Kahn and Seymour, showing that the integrality gap is exactly ${k-1+\frac{1}{k}}$ for k-uniform hypergraphs, and is exactly k ? 1 for k-partite hypergraphs. This yields an improved approximation algorithm for the weighted 3-dimensional matching problem. Our algorithm combines the use of the iterative rounding method and the fractional local ratio method, showing a new way to round linear programming solutions for packing problems.
  • We study the strengthening of the standard LP relaxation by local constraints. We show that, even after linear number of rounds of the Sherali-Adams lift-and-project procedure on the standard LP relaxation, there are k-uniform hypergraphs with integrality gap at least k ? 2. On the other hand, we prove that for every constant k, there is a strengthening of the standard LP relaxation by only a polynomial number of constraints, with integrality gap at most ${\frac{k+1}{2}}$ for k-uniform hypergraphs. The construction uses a result in extremal combinatorics.
  • We consider the standard semidefinite programming relaxation of the problem. We prove that the Lovász ${\vartheta}$ -function provides an SDP relaxation with integrality gap at most ${\frac{k+1}{2}}$ . The proof gives an indirect way (not by a rounding algorithm) to bound the ratio between any local optimal solution and any optimal SDP solution. This shows a new connection between local search and linear and semidefinite programming relaxations.
  •   相似文献   

    14.
    We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

    15.
    This paper is concerned with a class of ellipsoidal sets (ellipsoids and elliptic cylinders) in ${\mathbb{R}^m}$ which are determined by a freely chosen m × m positive semidefinite matrix. All ellipsoidal sets in this class are similar to each other through a parallel transformation and a scaling around their centers by a constant factor. Based on the basic idea of lifting, we first present a conceptual min-max problem to determine an ellipsoidal set with the smallest size in this class which encloses a given subset of ${\mathbb{R}^m}$ . Then we derive a numerically tractable enclosing ellipsoidal set of a given semialgebraic subset of ${\mathbb{R}^m}$ as a convex relaxation of the min-max problem in the lifting space. A main feature of the proposed method is that it is designed to incorporate into existing SDP relaxations with exploiting sparsity for various optimization problems to compute error bounds of their optimal solutions. We discuss how we adapt the method to a standard SDP relaxation for quadratic optimization problems and a sparse variant of Lasserre’s hierarchy SDP relaxation for polynomial optimization problems. Some numerical results on the sensor network localization problem and polynomial optimization problems are also presented.  相似文献   

    16.
    At the intersection of nonlinear and combinatorial optimization, quadratic programming has attracted significant interest over the past several decades. A variety of relaxations for quadratically constrained quadratic programming (QCQP) can be formulated as semidefinite programs (SDPs). The primary purpose of this paper is to present a systematic comparison of SDP relaxations for QCQP. Using theoretical analysis, it is shown that the recently developed doubly nonnegative relaxation is equivalent to the Shor relaxation, when the latter is enhanced with a partial first-order relaxation-linearization technique. These two relaxations are shown to theoretically dominate six other SDP relaxations. A computational comparison reveals that the two dominant relaxations require three orders of magnitude more computational time than the weaker relaxations, while providing relaxation gaps averaging 3% as opposed to gaps of up to 19% for weaker relaxations, on 700 randomly generated problems with up to 60 variables. An SDP relaxation derived from Lagrangian relaxation, after the addition of redundant nonlinear constraints to the primal, achieves gaps averaging 13% in a few CPU seconds.  相似文献   

    17.
    We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice \({\mathbf{Z}}^n\). We present a simple semidefinite programming (SDP) relaxation for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions, and thus an upper bound on the optimal value. The effectiveness of the method is shown for numerical problem instances of various sizes.  相似文献   

    18.
    We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this approach as a bounding routine in an SDP-based branch-and-bound framework. In case of a convex objective function, the new SDP bound improves the bound given by the continuous relaxation of the problem. Numerical experiments show that our algorithm performs well on various types of non-convex instances.  相似文献   

    19.
    We analyze the semidefinite programming (SDP) based model and method for the position estimation problem in sensor network localization and other Euclidean distance geometry applications. We use SDP duality and interior-point algorithm theories to prove that the SDP localizes any network or graph that has unique sensor positions to fit given distance measures. Therefore, we show, for the first time, that these networks can be localized in polynomial time. We also give a simple and efficient criterion for checking whether a given instance of the localization problem has a unique realization in using graph rigidity theory. Finally, we introduce a notion called strong localizability and show that the SDP model will identify all strongly localizable sub-networks in the input network. A preliminary version of this paper has appeared in the Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005.  相似文献   

    20.
    This paper studies how to solve semi-infinite polynomial programming (SIPP) problems by semidefinite relaxation methods. We first recall two SDP relaxation methods for solving polynomial optimization problems with finitely many constraints. Then we propose an exchange algorithm with SDP relaxations to solve SIPP problems with compact index set. At last, we extend the proposed method to SIPP problems with noncompact index set via homogenization. Numerical results show that the algorithm is efficient in practice.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号