首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on Time-of-Flight Mass Spectrometry (TOFMS) analysis of plasmas produced in laser ablation of Al targets. We used both the second (532 nm) and third (355 nm) harmonic of a Nd: YAG laser system, carrying out the investigation in a regime of relatively high laser fluence (up to 70 J/cm2), where the production of ionized species in the plume is maximized. We present TOF mass spectra of ions in the laser-produced plasma, and a detailed analysis of the relative abundance of different charged species as a function of the laser fluence. The presence of single, doubly and triply ionized Al atoms has been observed and the fluence threshold for their production is reported. We also studied the total ion and electron yield at different laser fluences, its saturation above specific energy densities, and singly ionized cluster-ions produced in the laser plasma.  相似文献   

2.
Total reflectivity of silver and molybdenum samples irradiated by high-intensity nanosecond Nd:YAG laser pulses in air of atmospheric pressure is experimentally studied as a function of laser fluence in the range of 0.1–100 J/cm2. The study shows that at laser fluences below the plasma formation threshold the total reflectivity of both silver and molybdenum remains virtually equal to the table room-temperature reflectivity values. The total reflectivity of these metals begins to decrease at a laser fluence of the plasma formation threshold. As the laser fluence increases above the plasma formation threshold, the reflectivity sharply drops to a low value and then remains unchanged with further increasing laser fluence. Calculation of the surface temperature at the plasma formation threshold fluence shows that the surface temperature value is substantially below the melting point that indicates an important role of the surface nanostructural defects in the plasma formation on a real sample due to their enhanced heating caused by both plasmonic absorption and plasmonic nanofocusing.  相似文献   

3.
A gold target has been irradiated with a Q-switched Nd:Yag laser having 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and a maximum power density of the order of 1010?W/cm2. The laser–target interaction produces a strong gold etching with production of a plasma in front of the target. The plasma contains neutrals and ions having a high charge state. Time-of-flight (TOF) measurements are presented for the analysis of the ion production and ion velocity. A cylindrical electrostatic deflection ion analyzer permits measurement of the yield of the emitted ions, their charge state and their ion energy distribution. Measurements indicate that the ion charge state reaches 6+ and 10+ at a laser fluence of 100?J/cm2 and 160?J/cm2, respectively. The maximum ion energy reaches about 2?keV and 8?keV at these low and high laser fluences, respectively. Experimental ion energy distributions are given as a function of the ion charge state. Obtained results indicate that electrical fields, produced in the plume, along the normal to the plane of the target surface, exist in the unstable plasma. The electrical fields induce ion acceleration away from the target with a final velocity dependent on the ion charge state. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the authors have corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

4.
The saturation characteristics of 3-pentanone fluorescence were investigated in an ambient temperature and pressure cell by imaging the fluorescence produced by a focused quadrupled Nd:YAG laser beam. The onset of fluorescence saturation was observed at laser fluences around 0.06 J/cm2, which is only about 1.3% of estimates that assume a two-level model and use measured values of the fluorescence lifetime and absorption cross-section. A spatially resolved model indicated that the saturation fluence changed only 10% when a Gaussian profile was used instead of a top-hat profile. Laser sources with significantly different temporal profiles will have different threshold fluence levels, but the present results suggest that saturation effects should be monitored in planar laser-induced fluorescence imaging experiments using 3-pentanone.  相似文献   

5.
A study of VIS laser ablation of graphite, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation gives an emission mass spectrum attributable to Cn neutral and charged particles. Mass quadrupole spectroscopy, associated to electrostatic ion deflection, allows estimation of the velocity distributions of several of these emitting species within the plume as a function of the incident laser fluence. Time gated plume imaging and microscopy measurements have been used to study the plasma composition and the deposition of thin carbon films. The multi-component structure of the plume emission is rationalized in terms of charge state, ions temperature and neutrals temperature. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated in the non-equilibrium plasma conditions. The use of nanosecond laser pulses, at fluences below 10 J/cm2, produces interesting C-atomic emission effects, as a high ablation yield, a high fractional ionization of the plasma and presence of nanostructures deposited on near substrates.  相似文献   

6.
In the last years the ion component of a laser-produced plasma has been considered and studied as an object to provide high-density ion sources, which can be applied in many fields such as laser-induced implantation. In this work a KrF laser beam of 108 W/cm2 irradiance was focused onto single-crystalline Fe and single-crystalline Fe with 2% of Si targets and the characteristics of both free expanding laser-produced plasmas were compared. The time-of-flight (TOF) method was applied to determine the ion charge yield at various laser fluences and the ion angular spread. The analyses of TOF spectra showed a synergetic effect of the silicon admixture in target material on the Fe ions production. Besides, this admixture was also responsible of the increasing of the plasma temperature which corresponds in turn to the increasing of the average kinetic energy of the particles as well as of the more collimated ion distribution.  相似文献   

7.
Thin films of silica containing silver nanoclusters have been deposited by magnetron co-sputtering followed by thermal annealing. Laser modification of the mean cluster size was performed using the fourth harmonic of a Nd:YAG laser with energies of between 35 and 125 mJ/cm2. The mean size of the clusters was estimated from the shape of the plasmon resonance band in the optical absorption spectra with the help of a computer simulation based on the Mie theory in static approximation. It was found that laser treatment with fluences above a certain threshold leads to a reduction of the mean size of the clusters and this reduction is greater for greater fluences. After a long treatment with the same fluence the effect saturates. The final mean size of the clusters after saturation depends only on the laser fluence and not on the initial mean cluster size. When lower laser fluences were used it was possible after laser annealing to return the mean cluster size to its initial value by thermal annealing. In this way by using a combination of laser treatment and thermal annealing a predetermined mean cluster size could be achieved. The mechanism of laser-induced cluster-size modification is discussed. PACS 81.07.-b; 42.62.-b; 36.40.Qv  相似文献   

8.
We present an experimental characterization describing the characteristics features of the plasma plume dynamics and material removal efficiency during ultrashort, visible (527 nm, ≈300 fs) laser ablation of nickel in high vacuum. The spatio-temporal structure and expansion dynamics of the laser ablation plasma plume are investigated by using both time-gated fast imaging and optical emission spectroscopy. The spatio-temporal evolution of the ablation plume exhibits a layered structure which changes with the laser pulse fluence F. At low laser fluences (F<0.5 J/cm2) the plume consists of two main populations: fast Ni atoms and slower Ni nanoparticles, with average velocities of ≈104 m/s for the atomic state and ≈102 m/s for the condensed state. At larger fluences (F>0.5 J/cm2), a third component of much faster atoms is observed to precede the main atomic plume component. These atoms can be ascribed to the recombination of faster ions with electrons in the early stages of the plume evolution. A particularly interesting feature of our analysis is that the study of the ablation efficiency as a function of the laser fluence indicates the existence of an optimal fluence range (a maximum) for nanoparticles generation, and an increase of atomization at larger fluences. PACS 52.50.-b; 52.38.Mf; 79.20.Ds; 81.07.-b  相似文献   

9.
This paper presents the effect of XeCl laser irradiation on Nd:YAG single crystal samples with various number of pulses at different repetition rates and laser fluences. Effects of the irradiation on the optical and structural properties of the crystal are analyzed by UV–vis-NIR spectroscopy. Annihilation of some point defects of the crystal structure is observed following laser irradiation at a fluence of 100 mJ cm−2 with 100 and 500 pulses. Increasing the laser fluence and pulse numbers leads to saturation and new defects are found to be formed in the crystal. Additional absorption spectra of the irradiated samples show that oxygen vacancies in the Nd:YAG crystals are removed during the low-dose irradiation. The laser irradiation is compared to the thermal annealing process for Nd:YAG crystal modification. Additional absorption spectrum of an annealed sample reveals that induced negative absorption band at 236 nm is correlated with the annihilation of the oxygen vacancy center. Our results also demonstrate that XeCl laser treatment has several advantages upon annealing at high temperatures in the Nd:YAG crystal quality improvement. Thus, the present work can give a new approach to modify Nd:YAG crystals to be used in a wide variety of solid-state laser engineering.  相似文献   

10.
Below laser fluences where a plasma is formed (the so-called plasma or plume formation threshold) a number of fundamental phenomena can occur where particles such as atomic and molecular ions, atoms and molecular neutrals, and electrons can be emitted. An understanding of such processes is necessary to develop predictive models for material removal from laser irradiated surfaces—at the foundation of laser etching, machining, and pulsed laser deposition. We have reported on a number of the mechanisms for such emission processes. Here, due to space limitations, we present a summary of our studies on the formation of negative alkali ions from single crystal KCl during exposure to pulsed 248-nm radiation at fluences well below the threshold for plasma formation. Despite the high electron affinities of the corresponding halogen atoms, negative halogen ions were not detected. Significantly, the positive and negative alkali ion distributions overlap strongly in time and space, consistent with K formation by the sequential attachment of two electrons to K+. Negative alkali ions are also observed under comparable conditions from LiF, NaCl, and KBr. In each material, the strong overlap between the positive and negative alkali ion distributions, and the lack of detected negative halogen ions, suggest that negative ion formation involves a similar mechanism.  相似文献   

11.
Silver nanoparticles were produced by laser ablation of a continuously flowing aerosol of microparticles in nitrogen at varying laser fluences. Transmission electron micrographs were analyzed to determine the effect of laser fluence on the nanoparticle size distribution. These distributions exhibited bimodality with a large number of particles in a mode at small sizes (3–6-nm) and a second, less populated mode at larger sizes (11–16-nm). Both modes shifted to larger sizes with increasing laser fluence, with the small size mode shifting by 35% and the larger size mode by 25% over a fluence range of 0.3–4.2-J/cm2. Size histograms for each mode were found to be well represented by log-normal distributions. The distribution of mass displayed a striking shift from the large to the small size mode with increasing laser fluence. These results are discussed in terms of a model of nanoparticle formation from two distinct laser–solid interactions. Initially, laser vaporization of material from the surface leads to condensation of nanoparticles in the ambient gas. Material evaporation occurs until the plasma breakdown threshold of the microparticles is reached, generating a shock wave that propagates through the remaining material. Rapid condensation of the vapor in the low-pressure region occurs behind the traveling shock wave. Measurement of particle size distributions versus gas pressure in the ablation region, as well as, versus microparticle feedstock size confirmed the assignment of the larger size mode to surface-vaporization and the smaller size mode to shock-formed nanoparticles.  相似文献   

12.
A single-crystal CaF2 (111) was irradiated with single and multiple laser (Ti:sapphire, 800 nm, 25 fs) shots at fluences ranging from 0.25 to 1.5 J cm?2. In this fluence regime, a single laser pulse usually leads to typical bump-like features ranging from 200 nm to 1.5 μm in diameter and 10–50 nm in height. These bumps are related to compressive stresses due to a pressure build-up induced by fast laser heating and their subsequent relaxation. When CaF2 is irradiated with successive (in our case 20) shots at a laser fluence of 1.5 J cm?2, nanocavities at the top of the microbumps are observed. The formation of these nanocavities is regarded as an explosion and is attributed to the explosive expansion generated by shock waves due to laser-induced plasma after the nonlinear absorption of the laser energy by the material. Such kinds of surface structures at the nanometre scale could be attractive for nanolithography.  相似文献   

13.
We have studied the effects of laser fluence on the characteristics of graphene nanosheets produced by pulsed laser ablation technique. In this work, The second harmonic of a Q-switched Nd:YAG laser at 532 nm wavelength and 5 Hz repetition rate with different laser fluences in the range of 0.5–1.8 J/cm2 was used to irradiate the graphite target in liquid nitrogen medium. The products of ablation were characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction pattern, UV–Vis absorption spectroscopy, Raman spectrum and transmission electron microscopy. The Raman spectroscopy indicates that the quality of the graphene nanosheets was decreased while their structure defects were increased as the laser fluence was increased from 0.5 to 1.4 J/cm2. Our results suggest that the amount of defects and the number of layers in graphene nanosheets can be changed by adjusting the laser fluence. This study could be a useful guidance for producing of high quality of graphene nanosheets by laser ablation method.  相似文献   

14.
We have measured time-resolved laser-induced incandescence of flame-generated soot under high-vacuum conditions (4.1×10−6 mbar) at an excitation wavelength of 532 nm with laser fluences spanning 0.06–0.5 J/cm2. We generated soot in an ethylene/air diffusion flame, introduced it into the vacuum system with an aerodynamic lens, heated it using a pulsed laser with a spatially homogeneous and temporally smooth laser profile, and recorded LII temporal profiles at 685 nm. At low laser fluences LII signal decay rates are slow, and LII signals persist beyond the residence time of the soot particles in the detection region. At these fluences, the temporal maximum of the LII signal increases nearly linearly with increasing laser fluence until reaching a plateau at ∼0.18 J/cm2. At higher fluences, the LII signal maximum is independent of laser fluence within experimental uncertainty. At these fluences, the LII signal decays rapidly during the laser pulse. The fluence dependence of the vacuum LII signal is qualitatively similar to that observed under similar laser conditions in an atmospheric flame but requires higher fluences (by ∼0.03 J/cm2) for initiation. These data demonstrate the feasibility of recording vacuum LII temporal profiles of flame-generated soot under well-characterized conditions for model validation.  相似文献   

15.
Laser fragmentation of Ag nanoparticles in Ag hydrosol was studied by simultaneous measurements of the transmitted fluence of the incident laser beam and the time evolution of the surface plasmon extinction (SPE) spectra. The experiments showed that the laser fragmentation in a small volume of hydrosol proceeds during first 20 pulses and then reaches saturation. The value of the transmitted fluence corresponding to saturation increases with incident pulse fluence, but the impact of the first pulse applied to the hydrosols shows an optical limitation. Fluences above 303 mJ/cm2 cause the formation of less stable, aggregating nanoparticles, while fluences below 90 mJ/cm2 do not provide sufficient energy for efficient fragmentation. The interval of fluences between 90–303 mJ/cm2 is optimal for fragmentation, since stable hydrosols constituted by small, non-aggregated nanoparticles are formed.  相似文献   

16.
Amorphous carbon nitride (a-CN) thin films show luminescent properties that are of interest for many applications. Particularly interesting are their previously reported thermoluminescent characteristics. In order to optimize these properties, the plasma parameters (ion energy, plasma density and type of excited species) were studied in the present work as a function of the laser fluence and the working pressure. The plasma was produced using the fundamental line of a Nd:YAG laser with 28 ns pulse duration focused on a high purity graphite target. The laser fluences used in this work could be varied between 9 and 40 J/cm2. Measurements and deposition of a-CN films were carried out in a nitrogen atmosphere at pressures from 3×10-3 to 7.5×10-2 Torr. We observed an optimum value of pressure, close to 7.5×10-2 Torr, in which the nitrogen incorporation into the film achieved its maximum value close to 29 at.% and the thermoluminescent response of the material, after irradiation with UV becomes evident. PACS 81.15.Fg; 78.60.Kn; 81.05.Uw  相似文献   

17.
The effect of sub-nanosecond fluence fluctuations and triggering on time-resolved laser-induced incandescence (LII) from soot has been studied using an injection-seeded pulsed Nd:YAG laser that produces a smooth laser temporal profile. Without injection seeding, this multi-mode laser generates pulses with large intensity fluctuations with sub-nanosecond rise times. The experimental results described here demonstrate that at fluences below 0.6 J/cm2 LII signals are insensitive to fluence fluctuations on nanosecond time scales. At fluences above 0.6 J/cm2 fluctuations in the laser profile cause the rising edge of the LII profile to move around in time relative to the center of the laser pulse causing a broader average profile that shifts to earlier times. Such fluctuations also lead to a decrease in the average LII temporal profile by up to 12% at a fluence of 3.5 J/cm2. A timing jitter on the trigger of the data acquisition, such as that produced by triggering on the laser Q-switch synchronization pulse, has a negligible effect on the shape and temporal maximum of the LII signal. Additional jitter, however, considerably reduces the peak of the LII temporal profiles at fluences as low as 0.15 J/cm2. Neither fast fluence fluctuations nor trigger jitter have a significant effect on gated LII signals, such as those used to infer soot volume fraction.  相似文献   

18.
We have investigated the laser fluence dependence of the ion emission process in ultrafast laser ablation of graphite using a time-of-flight technique. Two regimes of ion emission have been identified: (1) a highly nonlinear laser absorption process accompanied by generation of a transient electrical field on the surface and collisionless emission of ions due to electrostatic repulsion; (2) a saturation regime for laser power absorption characterised by nearly equal kinetic energy of ejected carbon clusters. We also show the effect of the surface temperature on the emitted clusters’ stability and the influence of nonlinearity on the intensity autocorrelation traces.  相似文献   

19.
IR laser-induced ionization is investigated in condensed methanol (77 K) using a TEA CO2 laser for resonant vibrational excitation and a quadrupole mass spectrometer to analyse the ion spectra produced by laser irradiation. Ions are already detected at laser fluences below 1 J/cm2, far below dielectric breakdown. The fluence dependence of the ion yield is measured for two groups of ions and the total number of ions. A mechanism is proposed for the photochemical production of protonated molecules. The protonated monomer is the species with the highest abundance; however, protonated dimers and other quasimolecular ions and fragment ions are also found.  相似文献   

20.
The ablation efficiency of aqueous solutions with different concentrations and spatially homogeneous (CuCl2 solution) and heterogeneous (ink solution) absorption was studied as a function of the pulse-energy fluence (Nd:YAG laser, λ=1064 nm, τp = 20 ns). The latter was varied over a wide range from 0.15 J/cm2 to 8.00 J/cm2. The ablation threshold of solutions with heterogeneous absorption was found to be much lower (3 to 4 times) than the ablation threshold of solutions with homogeneous absorption and with the same average absorption coefficient. The ablation efficiency of heterogeneous solutions was higher by more than an order of magnitude. It was found that the ablation efficiency increases drastically for both types of solutions as the pulse energy fluence was raised to exceed the ablation threshold by 2 or 3 times. At such energy fluences, along with small droplets, larger droplets (1.5–2 mm cross section) could be ejected. This points to the ablation of solutions being affected by a hydrodynamic shock formed as a result of the pulsed recoil pressure excerted by the ablation products. The differences between the ablation processes for solutions with homogeneous and heterogeneous absorption as well as the hydrodynamic destruction at high energy fluences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号