首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hole subband structures and effective masses of tensile strained Si/Sil-yGey quantum wells are calculated by using the 6 × 6 k·p method. The results show that when the tensile strain is induced in the quantum well, the light-hole state becomes the ground state, and the light hole effective masses in the growth direction are strongly reduced while the in-plane effective masses are considerable. Quantitative calculation of the valence intersubband transition between two light hole states in a 7nm tensile strained Si/Si0.55Ge0.45 quantum well grown on a relaxed Si0.5Ge0.5 (100) substrates shows a large absorption coefficient of 8400 cm^-1.  相似文献   

2.
The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the position of the extremal point, and effective mass. Based on an analysis of symmetry under strain, the number of equivalent CB edge energy extrema is presented; Using the K.P method with the help of perturbation theory, dispersion relation near minima of CB bottom energy, derived from the linear deformation potential theory, is determined, from which the parameters, namely, the position of the extremal point, and the longitudinal and transverse masses (m1^* and mt^*)are obtained.  相似文献   

3.
黄伟其  刘世荣 《中国物理》2004,13(7):1163-1166
We report the investigation on the oxidation behaviour of Si_{1-x}Ge_x alloys (x=0.05, 0.15, and 0.25). It was found for the first time that a nanocap (thickness: 1.6-2.0nm) was formed on the oxide film after fast oxidation. Some new peaks in photoluminescence spectra were discovered, which could be related to the Ge nanocap, the Ge nanolayer (thickness: 0.8-1.2nm) and the Ge nanoparticles (with various diameters from 2.6nm to 7.4nm), respectively. A suitable model and several new calculating formulae combined with the Unrestricted Hartree-Fock-Roothaan (UHFR) method and quantum confinement analysis have been proposed to interpret the PL spectra and the nanostructure mechanism in the oxide and Ge segregation.  相似文献   

4.
E.Yüzüak  B.Emre  Y.Elerman}  A.Yücel} 《中国物理 B》2010,19(5):57501-057501
The crystal structure,magnetic and magnetocaloric characteristics of the pseduo ternary compounds of Tb5Ge2 xSi2 xMn2x(0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements.The x-ray powder diffraction results show that all compounds preserve the monoclinic phase as the majority phase and all the synthesized compounds were observed to be ferromagnetic from magnetization measurements.Magnetic phase transitions were interpreted in terms of Landau theory.Maximum isothermal magnetic entropy change value(20.84 J.kg-1.K-1) was found for Tb5Ge1.95Si1.95Mn0.1 at around 123 K in the magnetic field change of 5 T.  相似文献   

5.
Two new Group IV element allotropes Si$_{3}$ and Ge$_{3}$ in P6$_{2}$22 phase are predicted in this work and their physical properties are investigated using the density functional theory. Each of the newly predicted allotropes has a super dense structure, which is mechanically, dynamically, and thermodynamically stable, as verified by elastic constants, phonon dispersion spectra and relative enthalpies, respectively. The mechanical anisotropy propertiesare studied in detail by illustrating the directional dependence of Young's modulus, discussing the universal anisotropic index, and calculating shear anisotropy factors together with bulk moduli. It shows that P6$_{2}$22-Si$_{3}$ exhibits the greater anisotropy than P6$_{2}$22-Ge$_{3}$,and interestingly both of the newly predicted crystals appear to be isotropic in the (001) plane. Additionally, the Debye temperature, sound velocities, and the minimum thermal conductivity are examined to evaluate the thermodynamic properties of C$_{3}$, Si$_{3}$, and Ge$_{3}$ in P6$_{2}$22 phase, and the electronic band structures are achieved by HSE06 hybrid functional, which indicate that P6$_{2}$22-C$_{3}$ and -Si$_{3}$ are indirect band gap semiconductors and P6$_{2}$22-Ge$_{3}$ exhibits the metallic feature.  相似文献   

6.
Novel vertical stack HCMOSFET with strained SiGe/Si quantum channel   总被引:3,自引:0,他引:3       下载免费PDF全文
姜涛  张鹤鸣  王伟  胡辉勇  戴显英 《中国物理》2006,15(6):1339-1345
A novel vertical stack heterostructure CMOSFET is investigated, which is structured by strained SiGe/Si with a hole quantum well channel in the compressively strained Si量子信道 异质结构 CMOSFET 量子论 量子阱strained SiGe/Si, quantum well channel, heterostructure CMOSFET, poly-SiGe gateProject supported by the Preresearch from National Ministries and Commissions (Grant Nos 51408061104DZ01, 51439010904DZ0101).2/2/2006 12:00:00 AM2006-01-022006-03-16A novel vertical stack heterostructure CMOSFET is investigated, which is structured by strained SiGe/Si with a hole quantum well channel in the compressively strained Sil-xGex layer for p-MOSFET and an electron quantum well channel in the tensile strained Si layer for n-MOSFET. The device possesses several advantages including: 1) the integration of electron quantum well channel with hole quantum well channel into the same vertical layer structure; 2) the gate work function modifiability due to the introduction of poly-SiGe as a gate material; 3) better transistor matching; and 4) flexibility of layout design of CMOSFET by adopting exactly the same material lays for both n-channel and p-channel. The MEDICI simulation result shows that p-MOSFET and n-MOSFET have approximately the same matching threshold voltages. Nice performances are displayed in transfer characteristic, transconductance and cut-off frequency. In addition, its operation as an inverter confirms the CMOSFET structured device to be normal and effective in function.  相似文献   

7.
符史流  尹涛  柴飞 《中国物理》2007,16(10):3129-3133
Ce^4+-doped Ca2SnO4 with a one-dimensional structure, which emits bright blue light, is prepared by using a solid-state reaction method. The x-ray diffraction results show that the Ce^4+ ions doped in Ca2SnO4 occupy the Sn^4+ sites. The excitation and emission spectra of Ca2Sn1-xCexO4 appear to have broad bands with peaks at - 268nm and -442nm, respectively. A long excited-state lifetime (-83μs) for the emission from Ca2Sn1-xCexO4 suggests that the luminescence originates from a ligand-to-metal Ce^4+ charge transfer (CT). The luminescent properties of Ca2Snl_xCexO4 have been compared with those of Sr2CeO4, which is the only material reported so far to show Ce^4+ CT luminescence. More interestingly, it is observed that the emission intensity of Ca2Sn1-xCexO4 with a small doping concentration (x - 0.03) is comparable to that of Sr2CeO4 in which the concentration of active centre is 100%.  相似文献   

8.
激光照射下的低温氧化生成锗的纳米结构及其特性   总被引:6,自引:0,他引:6       下载免费PDF全文
黄伟其  刘世荣 《物理学报》2005,54(2):972-976
在高精度椭偏仪(HPE)系统中,采用激光照射硅锗合金衬底助氧化的新方法,在SiO2层中生成锗的双纳米面结构;并在样品生长过程中,用HPE同步测量样品的纳米结构. 用Raman光谱仪测量样品的横断面,发现很强的PL发光谱峰. 用量子受限模型和改进的量子从头计算(UHFR)方法分析了PL光谱的结构. 关键词: 高精度椭偏仪 锗的纳米结构 PL光谱 量子受限  相似文献   

9.
氧化硅层中的锗纳米晶体团簇量子点   总被引:1,自引:0,他引:1       下载免费PDF全文
刘世荣  黄伟其  秦朝建 《物理学报》2006,55(5):2488-2491
采用氧化和析出的方法在氧化硅中凝聚生成锗纳米晶体量子点结构. 其形成的锗晶体团簇没有突出的棱角和支晶结构,锗晶体团簇的轮廓较圆混,故可以用球形量子点模型来模拟实际的锗晶体团簇. 对比了在长时间退火氧化条件下和在短时间退火用激光照射氧化条件下所生成的锗纳米晶体结构的PL光谱和对应的锗纳米晶体团簇的尺寸分布. 短时间退火氧化条件下生成的锗纳米晶体较小(3.28—3.96nm),长时间退火用激光照射氧化条件下所生成的锗纳米晶体较大(3.72—4.98nm);其分布结构显示某些尺寸的锗纳米晶体团簇较稳定,适当的氧化条件可以得到尺寸分布范围较窄的锗纳米晶体团簇. 用量子点受限模型计算了锗纳米晶体团簇的能隙结构,用Monte Carlo方法模拟了PL光谱和对应的锗纳米晶体团簇的尺寸分布,分别与实验结果符合较好. 关键词: 锗晶体团簇 纳米晶体 量子点 激光照射  相似文献   

10.
马忠元 《物理学报》2008,57(1):303-306
Intensive blue photoluminescence (PL) was observed at room temperature from the nanocrystalline-Si/SiO$_{2}$ (nc-Si/SiO$_{2})$ multilayers (MLs) obtained by thermal annealing of SiO/SiO$_{2}$\,MLs for the first time. By controlling the size of nc-Si formed in SiO sublayer from 3.5 to 1.5 nm, the PL peak blueshifts from 457 to 411 nm. Combining the analysis of TEM, Raman and absorption measurement, this paper attributes the blue PL to multiple luminescent centres at the interface of nc-Si and SiO$_{2}$.  相似文献   

11.
Zhihong Chen 《中国物理 B》2022,31(11):117105-117105
We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors (HEMTs) with thin-barrier to minimize surface leakage current to enhance the breakdown voltage. The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si$_{3}$N$_{4}$ was deposited by plasma-enhanced chemical vapor deposition (PECVD) after removing 20-nm SiO$_{2}$ pre-deposition layer. Compared to traditional Si$_{3}$N$_{4}$ passivation for thin-barrier AlGaN/GaN HEMTs, Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54% to 8.40%. However, Si-rich bilayer passivation leads to a severer surface leakage current, so that it has a low breakdown voltage. The 20-nm SiO$_{2}$ pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga-O bonds, resulting in a lower surface leakage current. In contrast to passivating Si-rich SiN directly, devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V. Radio frequency (RF) small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to $f_{\rm T}/f_{\rm max}$ of 68 GHz/102 GHz. At 30 GHz and $V_{\rm DS} = 20$ V, devices achieve a maximum $P_{\rm out}$ of 5.2 W/mm and a peak power-added efficiency (PAE) of 42.2%. These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.  相似文献   

12.
慈志鹏  王育华  张加弛 《中国物理 B》2010,19(5):57803-057803
Novel Y1 x yVO4:xDy3+,yBi3+(0.01 ≤ x ≤ 0.05,0 ≤ y ≤ 0.20) phosphors for light emitting diode(LED) were successfully synthesised by solid-state reaction.The calculation results of electronic structure show that YVO4 has a direct band gap with 3 eV at G.The top of the valence band is dominated by O 2p state and the bottom of the conduction band is mainly composed of O 2p and V 3d states.An efficient yellow emission under near-ultraviolet(365 nm) excitation is observed.Compared with the pure YVO4:Dy3+ samples,the Dy3+,Bi3+ co-doped samples show a more intensive emission peak(at 574 nm) and a new broad emission band(450-770 nm),due to the 4F9/2 6H13/2 transition of Dy3+ and the emission of the VO3 4 Bi3+ complex respectively.The optimum chromaticity index of Y1 x yVO4:xDy3+,yBi3+(0.01 ≤ x ≤ 0.05,0 ≤ y ≤ 0.20) is(0.447,0.497),which indicates that YVO4:Dy3+,Bi3+ has higher colour saturation than the commercial phosphor YAG:Ce3+.The effects of concentration of Dy3+,Bi3+,electric states and the photoluminescence properties are discussed in details.  相似文献   

13.
Tao Ma 《中国物理 B》2021,30(11):114208-114208
A biological sensing structure with a high-order mode ($\mathrm{E}_{21}^{y}$) is designed, which is composed of a suspended racetrack micro-resonator (SRTMR) and a microfluidic channel. The mode characteristics, coupling properties, and sensing performances are simulated by using the finite element method (FEM). To analyze the mode confinement property, the confinement factors in the core and cladding of the suspended waveguide for the $\mathrm{E}_{11}^{x}$, $\mathrm{E}_{11}^{y}$, and $\mathrm{E}_{21}^{y}$ are calculated. The simulation results show that the refractive index (RI) sensitivity of the proposed sensing structure can be improved by using the high-order mode ($\mathrm{E}_{21}^{y}$). The RI sensitivity for the $\mathrm{E}_{21}^{y}$ mode is ~ 201 nm/RIU, which is twice to thrice higher than those for the $\mathrm{E}_{11}^{x}$ mode and the $\mathrm{E}_{11}^{y}$ mode. Considering a commercial spectrometer, the proposed sensing structure based on the SRTMR achieves a limit of detection (LOD) of ~ 4.7×10-6 RIU. Combined with the microfluidic channel, the SRTMR can possess wide applications in the clinical diagnostic assays and biochemical detections.  相似文献   

14.
This paper computationally investigates the RhSin (n = 1 6) clusters by using a density functional approach. Geometry optimizations of the RhSin (n = 1 6) clusters are carried out at the B3LYP level employing LanL2DZ basis sets. It presents and discusses the equilibrium geometries of the RhSin (n = 1-6) clusters as well as the corresponding averaged binding energies, fragmentation energies, natural populations, magnetic properties, and the energy gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. Theoretical results show that the most stable RhSin(n = 1-6) isomers keep an analogous framework of the corresponding Sin+1 clusters, the RhSi3 is the most stable cluster in RhSin (n = 1-6) isomers. Furthermore, the charges of the lowest-energy RhSin (n = 1-6) clusters transfer mainly from Si atom to Rh atom. Meanwhile, the magnetic moments of the RhSin(n = 1-6) arises from the 4d orbits of Rh atom. Finally, compared with the Sin+1 cluster, the chemical stability RhSin clusters are universally improved.  相似文献   

15.
A series of metamorphic high electron mobility transistors (MMHEMTs) with different Ⅴ/Ⅲ flux ratios are grown on CaAs (001) substrates by molecular beam epitaxy (MBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum Ⅴ/Ⅲ ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm^2/(V.s) and 3.26×10^12cm^-2 respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the Ⅴ/Ⅲ ratio, for which the reasons are discussed.  相似文献   

16.
Zhi-Biao Xu 《中国物理 B》2022,31(8):87504-087504
The high-performance electromagnetic (EM) wave absorption material Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ was prepared by solid-state reaction, and its EM wave absorption properties were deeply studied. The results revealed that Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ could obtain excellent absorption properties in hundreds of megahertz by adjusting the Co$^{2+}$-Ti$^{4+}$ content. The best comprehensive property was obtained for $x=1.2$, where the optimal reflection loss ($RL$) value reaches $-30.42$ dB at about 600 MHz with thickness of 3.5 mm, and the corresponding effective absorption band covers the frequency range of 437 MHz-1 GHz. Moreover, the EM wave absorption mechanism was studied based on the simulation methods. The simulated results showed that the excellent EM wave absorption properties of Ba(CoTi)$_{x}$Fe$_{12-2x}$O$_{19}$@BiFeO$_{3}$ mainly originated from the internal loss caused by natural resonance, and the interface cancelation further improved the absorption properties and resulted in $RL$ peaks.  相似文献   

17.
陈德应  张盛  夏元钦 《中国物理 B》2009,18(7):3073-3078
Using a neutral N2 beam as target,this paper studies the dissociation of N2+ in intense femtosecond laser fields(45 fs,~1×10 16 W/cm 2) at the laser wavelength of 800 nm based on the time-of-flight mass spectra of N + fragment ions.The angular distributions of N+ and the laser power dependence of N + yielded from different dissociation pathways show that the dissociation mechanisms mainly proceed through the couplings between the metastable states(A,B and C) and the upper excited states of N2+.A coupling model of light-dressed potential energy curves of N+2 is used to interpret the kinetic energy release of N+.  相似文献   

18.
于宙  李祥  龙雪  程兴旺  刘颖  曹传宝 《中国物理 B》2009,18(7):3040-3043
This paper reports that a chemical method is employed to synthesize Co and Al co-doped ZnO,namely,Zn0.99 x Co0.01 Al x O dilution semiconductors with the nominal composition of x = 0,0.005 and 0.02.Structural,magnetic and optical properties of the produced samples are studied.The results indicate that samples sintered in air under the temperatures of 500 C show a single wurtzite ZnO structure and the ferromagnetism decreases with the increase of Al.Photoluminescence spectra of different Al-doped samples indicate that increasing Al concentration in Zn0.99 x Co0.01 Al x O results in a decrease of Zn i,which resembles the trend of the ferromagnetic property of the corresponding samples.Therefore,it is deduced that the ferromagnetism observed in the studied samples originates from the interstitial defect of zinc(Zni) in the lattice of Co-doped ZnO.  相似文献   

19.
Ben Chen 《中国物理 B》2022,31(9):93301-093301
PbF, a valuable candidate for measuring the electron electric dipole moment (eEDM), is of great significance in measuring its spectrum and deriving its molecular constants in experiment. In the present work, the rovibronic spectrum of the B$^{2}{\Sigma }^{+}$-X$_{1}^{\, 2}{\Pi }_{1/2}$ transition of PbF in a wavelength range of 260 nm-285 nm is studied by the laser ablation/laser induced fluorescence method. The molecular parameters of the X$_{1}^{\, 2}{\Pi }_{1/2}$ (${v'}=0)$ and B$^{2}{\Sigma }^{+}$ (${v}'=0, 1$) states are derived from the recorded spectra of the (0, 0) and (1, 0) bands of the B$^{2}{\Sigma }^{+}$-X$_{1}^{\, 2}{\Pi }_{1/2}$ transition. Also, the Franck-Condon factors (FCFs) of the transitions between the B$^{2}{\Sigma }^{+}$ and X$_{1}^{\, 2}{\Pi }_{1/2}$ states are calculated by the RKR/LEVEL method and the Morse potential method, respectively.  相似文献   

20.
The effects of metal core dimension, oxide shell thickness and ellipsoid aspect ratio of Al-Al2O3 core-shell nanoparticles on the near-infrared and visible absorption spectra of nanocomposite Al-Al2O3/nitrocellulose(NC) film are investigated by numerical calculations. Both the size-dependent interband transitions and frequency-dependent free electron damping of the nanometallic aluminium are taken into account in the calculations. Oxidation effect of nanoaluminium is also analysed. It is shown that oxidation may enhance but may also reduce the optical absorption, depending on the excited light energy and initial dimension of nanoparticle. Metal core size and excited light energy dominate the absorption characteristic. The absorption ability of ellipsoidal nanoparticles is larger than that of spheroidal nanoparticles and increases by the square index as the aspect ratio increases. These calculations will provide some significant theoretical guidance for the preparation and laser ignition of nanoenergetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号