首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
减摇水舱用于减小船体的横摇运动。由于水舱内部结构复杂,导致流体晃荡呈非线性。为了降低预测水舱特性和减摇效果的难度,采用计算流体力学VOF模型来分析水舱中流体的晃荡,在时域内,运用数值方法完成船体非线性横摇运动的实时仿真,其中耦合了水舱中流体和船体的运动。船体随机横摇时,进行水舱流体流量和力矩的功率谱分析,得到减摇频率范围及减摇前后的效果。结果表明,在其减摇频率范围内,减摇水舱具有良好的减摇能力,验证了此方法的可行性。  相似文献   

2.
舵,减摇和模糊控制   总被引:1,自引:0,他引:1  
杨松林  郑明辉 《江苏力学》1996,(11):175-179
本文将模糊控制理论应用于船舶操纵及横摇运动控制,开发了舵减计算机模拟系统,将船舶在各种外力情况下的操纵及横摇运动控制实时仿真:仿真结果表明:当船舶在定常风或海流作用下发生转艏,偏离原航向或产生横摇时,采用舵减摇可取得明显效果,并能保持原航向。  相似文献   

3.
考虑甲板上浪引起的横倾力矩、非线性阻尼和非线性恢复力矩,建立了规则横浪中船舶横摇运动方程;基于伯努利方程,推导了船舶甲板上浪水质量的计算公式.以66.01米长的拖网渔船为例,计算了不同波浪扰动力矩作用下的横摇响应,并构造了响应的分岔图和庞加莱截面.结果表明:甲板上浪后船舶横摇运动包括混沌运动和周期二、周期三、周期四等多周期运动;随着波浪扰动力矩幅值的增大,横摇响应发生从周期运动到混沌运动或从混沌运动到周期运动的阵发性分岔、正向及反向倍周期分岔.  相似文献   

4.
对于带有多个晃荡液舱的浮式结构物,浮体的运动、外场水动力以及各舱内的液体晃荡力会实时相互决定,发生复杂的耦合作用.为准确模拟多液舱浮式结构物的运动,本文引入一种有效的时域解耦算法.该方法以模态分解法为基础,通过对浮式结构物所受外域水动力和各液舱内非线性晃荡力进行模态分解,最终形成时域解耦运动方程,无需迭代求解过程即可显式计算浮式结构物的瞬时加速度.该方法可避免传统迭代求解方法在迭代次数、截断误差和收敛特性等方面的不足,减少解耦过程的计算耗时.本文进一步结合边界元数值方法,分别对单液舱浮式结构物和多液舱浮式结构物的工况开展数值模拟研究.通过与单液舱浮式结构物的实验结果对比,验证了本文时域解耦算法的有效性.本文详细分析了晃荡力对单液舱浮式结构物运动的影响,发现存在一个共振影响区间:当外场波浪频率在该区间之外时,可以在时域计算结果中观察到稳定的浮体运动;在比该区间更低频的波况下,液舱晃荡力与外场波浪力相位相反甚至可以相互抵消,此时晃荡液舱的存在可以减弱浮体运动;在比该区间更高频的波况下,液舱内晃荡力与外场波浪力可以具有相同相位,此时晃荡液舱的存在会加剧浮体的运动.本文进一步研究了四液舱浮式结构物在波浪中的纵荡、垂荡和纵摇运动情况,发现非线性液舱晃荡可对纵荡和纵摇运动产生影响,但对垂荡运动影响很小.  相似文献   

5.
张崇伟  宁德志 《力学学报》2019,51(6):1650-1665
对于带有多个晃荡液舱的浮式结构物, 浮体的运动、外场水动力以及各舱内的液体晃荡力会实时相互决定, 发生复杂的耦合作用. 为准确模拟多液舱浮式结构物的运动, 本文引入一种有效的时域解耦算法. 该方法以模态分解法为基础, 通过对浮式结构物所受外域水动力和各液舱内非线性晃荡力进行模态分解, 最终形成时域解耦运动方程, 无需迭代求解过程即可显式计算浮式结构物的瞬时加速度. 该方法可避免传统迭代求解方法在迭代次数、截断误差和收敛特性等方面的不足, 减少解耦过程的计算耗时. 本文进一步结合边界元数值方法, 分别对单液舱浮式结构物和多液舱浮式结构物的工况开展数值模拟研究. 通过与单液舱浮式结构物的实验结果对比, 验证了本文时域解耦算法的有效性. 本文详细分析了晃荡力对单液舱浮式结构物运动的影响, 发现存在一个共振影响区间: 当外场波浪频率在该区间之外时, 可以在时域计算结果中观察到稳定的浮体运动; 在比该区间更低频的波况下, 液舱晃荡力与外场波浪力相位相反甚至可以相互抵消, 此时晃荡液舱的存在可以减弱浮体运动; 在比该区间更高频的波况下, 液舱内晃荡力与外场波浪力可以具有相同相位, 此时晃荡液舱的存在会加剧浮体的运动. 本文进一步研究了四液舱浮式结构物在波浪中的纵荡、垂荡和纵摇运动情况, 发现非线性液舱晃荡可对纵荡和纵摇运动产生影响, 但对垂荡运动影响很小.   相似文献   

6.
关于舰船横摇中的若干非线性问题   总被引:2,自引:0,他引:2  
对船舶横摇运动中的一些非线性问题的若干研究现状进行了总结,讨论了所存在的一些问题及其发展趋势。对横摇非线性问题的产生以及导致非线性的因素作了简述,从大幅非线性横摇运动、横摇-垂荡耦合运动、和横摇-纵摇耦合运动三方面,详细综述了国内外关于舰船在波浪中的力学研究的发展趋势,提出了几个有待深入加强研究的问题。  相似文献   

7.
张银龙  沈庆  陈徐均 《应用力学学报》2005,22(2):247-252,i009
波浪和内部滑动车辆共同作用,使滚装船的横摇加剧。这是许多滚装船发生倾覆的重要原因之一。本文对由滚装船和滑动车辆组成的浮基多体系统中,取滚装船的横摇角和车辆在甲板上的横向位移为此系统的两个自由度。考虑非线性恢复力矩和非线性阻尼力矩的影响,运用浮基多体系统动力学方法,建立了系统的动力学方程。以某型海峡滚装渡轮为例,对在若干车辆同步滑动和波浪共同作用下的滚装船非线性横摇响应和车辆位移响应进行了数值计算,并与线性响应进行了比较,得出了考虑非线性时横摇角显著偏大的结论。  相似文献   

8.
ALE动网格法在流固耦合数值模拟中的应用   总被引:2,自引:0,他引:2  
为了解决流固耦合问题中的物体大幅度运动带来的困难,采用ALE(Arbitrary Lagrange-Euler)动网格方法跟踪自由表面上浮体的运动.计算表明:浮体在无粘流体中的垂荡与弹簧-物体的振动模型理论解符合得较好;浮体在粘性流体中的自由横摇为阻尼运动,其横摇角度随时间的增加而减小,且在不同初始角度下运动系统的固有周期相当.在有外力力矩激励时,外力力矩的周期与系统的固有周期相当时浮体横摇运动趋于共振状态,运动幅度最大.计算结果验证了计算程序的可靠性与精度.本文方法为ALE方法应用于流体-多浮体耦合运动分析奠定了基础.  相似文献   

9.
晃荡     
本文列举了诸多工程领域中的液体共振运动现象,详细探讨了船舱中伴有剧烈流动的晃荡问题.描述了基于理论分析的非线性多模态方法,该方法便于波动稳定性分区、多分支解和物理稳定性的研究.强调了方形舱、垂向圆柱舱以及球形舱内伴有旋转和混沌(不规则波动)的三维流动的重要性.晃荡引起的砰击涉及到各种各样的内流条件,这些条件随液体深度与舱体长度之比而变化.针对棱柱状LNG舱,讨论了许多与流体力学和热力学参数、影响砰击载荷效应的水弹性以及模型实验缩尺比的物理现象.  相似文献   

10.
本文列举了诸多工程领域中的液体共振运动现象,详细探讨了船舱中伴有剧烈流动的晃荡问题.描述了基于理论分析的非线性多模态方法,该方法便于波动稳定性分区、多分支解和物理稳定性的研究.强调了方形舱、垂向圆柱舱以及球形舱内伴有旋转和混沌(不规则波动)的三维流动的重要性.晃荡引起的砰击涉及到各种各样的内流条件,这些条件随液体深度与舱体长度之比而变化.针对棱柱状LNG舱,讨论了许多与流体力学和热力学参数、影响砰击载荷效应的水弹性以及模型实验缩尺比的物理现象.  相似文献   

11.
Sloshing     
本文列举了诸多工程领域中的液体共振运动现象,详细探讨了船舱中伴有剧烈流动的晃荡问题.描述了基于理论分析的非线性多模态方法,该方法便于波动稳定性分区、多分支解和物理稳定性的研究.强调了方形舱、垂向圆柱舱以及球形舱内伴有旋转和混沌(不规则波动)的三维流动的重要性.晃荡引起的砰击涉及到各种各样的内流条件,这些条件随液体深度与舱体长度之比而变化.针对棱柱状LNG舱,讨论了许多与流体力学和热力学参数、影响砰击载荷效应的水弹性以及模型实验缩尺比的物理现象.  相似文献   

12.
本文使用小参数法研究非线性强迫横摇及其跳跃现象。得出与文献[1,4]的不同附加转动惯量表达式,并获得出现跳跃现象的一些判据。理论跳跃频率与实验值较吻合。  相似文献   

13.
针对舱内晃荡液体与舱壁的相互作用,对舱内水动冲击力的等效力学模型进行了研究。基于混合系统理论,建立了强非线性液体晃荡的等效摆分段仿射模型,重点对矩形液舱的简化等效力学模型进行了分析。利用计算流体动力学软件Flow3D对矩形液舱内的强非线性液体晃荡进行了数值仿真。理论分析表明:分段仿射模型更符合刚性碰撞的假定,可以更有效地描述等效摆和舱壁碰撞时的速度跃变。仿真结果的对比表明:受到激励时,等效摆分段仿射模型所产生的力与Flow3D计算的结果比较接近,利用此模型可以恰当地描述强非线性液体晃荡。  相似文献   

14.
捷联惯导系统一般用划摇算法来补偿其速度漂移,标准的划摇算法是以理想的陀螺和加表信号为输入设计的,而实际中常用数字滤波器处理激光陀螺和加表信号,由于滤波器的非理想性,滤波后信号的幅频特性发生畸变,引入了较大的划摇算法误差。参考标准划摇算法误差公式,用相对划摇误差分析方法比较研究了算法的误差变化特性,证明误差大小与滤波器通带特性有关。基于经典划摇运动,推导了数据滤波后优化的划摇算法公式。修正算法考虑了滤波器幅频特性的影响,补偿了滤波器引入的划摇算法误差。仿真表明:优化算法在保证滤波器较小延时的同时,能明显减小算法精度损失,提高导航算法整体精度水平。  相似文献   

15.
航天测量船船摇数据特性分析   总被引:7,自引:0,他引:7  
简要介绍了远望号航天测量船船摇数据,分析了船摇数据对船载外测数据的影响,重点对船摇数据的一些基本规律和特性进行了初步分析。  相似文献   

16.
极地船舶操纵破冰性能是破冰船设计建造过程中需重点考虑的问题。为分析极地船舶操纵性能,本文发展了冰区船舶六自由度操纵破冰运动模型,采用扩展多面体离散元模拟海冰,舵桨操纵模型提供破冰力。开展平整冰区定常直航模拟计算,并与Lindqvist船体冰阻力经验公式展开对比验证;开展雪龙号敞水35°舵角操纵性仿真,并与实船试航结果进行对比。在此基础上,开展冰厚及舵角影响下的船体结构冰载荷及破冰轨迹计算,模拟得到操纵破冰航行中船体垂荡、横摇及纵摇运动时程;最后分析操纵破冰船体线载荷分布与直航破冰下的差异。  相似文献   

17.
船摇数据实时滤波与预报的时序法   总被引:2,自引:1,他引:2  
作为船摇数据建立一个时序时域模型-长自回归模型,在此模型基础上给出了船摇数据的实时滤波和预报的方法,并从均方误差、预报误差、残差序列的相关性、拟合方差、仿真计算等多方面考察了滤波及预报效果。AR(p)模型的系数估计采用最小二乘递推方法,用较少的运算量和存贮量,得到了较高的估值精度。该方法是一种非常值得推荐的船摇数据实时处理方法。  相似文献   

18.
陈翔  万德成 《力学学报》2019,51(3):714-729
液舱晃荡是一种在外部激励作用下部分装载的液舱内液体的波动现象,它会对液舱结构强度和运输船舶稳性产生危害.移动粒子半隐式法(moving particle semi-implicit,MPS)是一种典型的无网格粒子类方法,可以有效地模拟剧烈的液舱晃荡问题.但MPS方法存在计算效率低的缺点,难以模拟大规模三维问题,而GPU并行加速技术已广泛应用于科学计算领域.因此,本文将MPS方法与GPU并行加速技术相结合,采用CUDA程序语言编写,自主开发了MPSGPU-SJTU求解器,对三维液化天然气(liquefiednatural gas, LNG)型液舱晃荡进行了数值模拟.通过三种不同粒子间距的数值模拟,验证了求解器的收敛性,其中最大计算粒子数达到了200多万.与其他研究结果相比,MPSGPU-SJTU求解器能够准确地预测壁面砰击压力,并且捕捉晃荡过程中自由面的大幅度变形和强非线性破碎现象.相比CPU求解器的计算时间,GPU并行加速技术可以大幅度地减小计算时长,提高MPS方法的计算效率.本文将LNG型液舱与方型液舱的晃荡进行对比,结果表明在高充液率下LNG型液舱可以有效地减小晃荡幅值和壁面砰击压力.但在中低充液率下,LNG型液舱则会加剧晃荡,自由面呈现明显的三维特征.本文还进一步研究了水和LNG两种不同介质的液舱晃荡现象,数值模拟结果表明二者的流场基本相似,砰击压力则正比于液体密度.   相似文献   

19.
液舱晃荡是一种在外部激励作用下部分装载的液舱内液体的波动现象,它会对液舱结构强度和运输船舶稳性产生危害.移动粒子半隐式法(moving particle semi-implicit, MPS)是一种典型的无网格粒子类方法,可以有效地模拟剧烈的液舱晃荡问题.但MPS方法存在计算效率低的缺点,难以模拟大规模三维问题,而GPU并行加速技术已广泛应用于科学计算领域.因此,本文将MPS方法与GPU并行加速技术相结合,采用CUDA程序语言编写,自主开发了MPSGPU-SJTU求解器,对三维液化天然气(liquefied natural gas, LNG)型液舱晃荡进行了数值模拟.通过三种不同粒子间距的数值模拟,验证了求解器的收敛性,其中最大计算粒子数达到了200多万.与其他研究结果相比,MPSGPU-SJTU求解器能够准确地预测壁面砰击压力,并且捕捉晃荡过程中自由面的大幅度变形和强非线性破碎现象.相比CPU求解器的计算时间,GPU并行加速技术可以大幅度地减小计算时长,提高MPS方法的计算效率.本文将LNG型液舱与方型液舱的晃荡进行对比,结果表明在高充液率下LNG型液舱可以有效地减小晃荡幅值和壁面砰击压力.但在中低充液率下,LNG型液舱则会加剧晃荡,自由面呈现明显的三维特征.本文还进一步研究了水和LNG两种不同介质的液舱晃荡现象,数值模拟结果表明二者的流场基本相似,砰击压力则正比于液体密度.  相似文献   

20.
针对液舱内隔板的可渗透特性,采用多域边界元方法,对流体晃荡问题进行了非线性时域模拟计算与分析。计算研究表明,多域边界元方法能够准确地模拟带有可渗透隔板的液舱内流体晃荡现象。对应于没有隔板和有完全不可渗透隔板情形的计算结果与相应的实验和理论结果吻合良好,带有不同渗透率的隔板在一定程度上改变了结构的固有振荡频率,隔板的可渗...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号