首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用纳米颗粒对目标DNA的富集、分离作用以及阳离子荧光共轭聚合物良好的荧光特性,建立了一种特异性检测DNA的新方法.首先将标记有猝灭基团的DNA捕获探针修饰到纳米颗粒上,捕获互补的DNA分子;然后加入S1核酸酶,除去未捕获到互补DNA的捕获探针;最后用Dnase Ⅰ将颗粒上的双链切断,使猝灭基团从纳米颗粒上解离下来,与阳离子荧光共轭聚合物结合并猝灭其荧光.结果表明,目标核酸的浓度与该聚合物的荧光猝灭程度正相关,且具有良好的特异性,线性响应范围为5.0~40 nmol/L; 检出限为3.7 nmol/L(S/N=3).  相似文献   

2.
含三苯胺单元的超支化共轭聚合物的合成、表征及应用   总被引:3,自引:1,他引:2  
本实验采用Wittig方法制得了未封端和封端的超支化聚三苯胺-对苯乙烯撑型聚合物,对两种共轭聚合物进行了表征和性能测试.聚合物溶液和固体膜在紫外光照射下均发出较强的绿光.首次对这类聚合物在硝基芳烃化合物荧光猝灭能力进行了初步研究,结果表明:与未封端产物相比,封端后的超支化共轭聚合物在邻硝基甲苯(o-NT)的荧光猝灭效率上有明显提高,当o-NT浓度为21.5×10-3mol/L时,荧光猝灭效率达到97%.这类共轭聚合物不仅合成操作较为简便,猝灭效率也较高,是一种很有潜力的硝基芳烃化合物荧光检测材料.  相似文献   

3.
杜娟  赵丹  陈彦国  何治柯 《化学学报》2006,64(10):963-967
探讨了表面活性剂存在下, 水溶性阴离子共轭聚合物聚[5-甲氧基-2-(3-磺酰化丙氧基)-1,4-苯撑乙烯](简写为MPS-PPV)的微环境变化对荧光性质及电荷转移的影响. 结果表明, 阳离子表面活性剂及非离子表面活性剂使MPS-PPV荧光增强, 阴离子表面活性剂使其荧光先增强后减弱; 在MPS-PPV/表面活性剂体系中加入电子接受体Pd2+, 发现非离子表面活性剂体系的荧光猝灭效率提高, 阴离子及阳离子表面活性剂体系荧光猝灭效率下降. 此研究对研制基于阴离子共聚物的新型生物化学传感器具有一定的指导意义.  相似文献   

4.
探讨了表面活性剂存在下, 水溶性阴离子共轭聚合物聚[5-甲氧基-2-(3-磺酰化丙氧基)-1,4-苯撑乙烯](简写为MPS-PPV)的微环境变化对荧光性质及电荷转移的影响. 结果表明, 阳离子表面活性剂及非离子表面活性剂使MPS-PPV荧光增强, 阴离子表面活性剂使其荧光先增强后减弱; 在MPS-PPV/表面活性剂体系中加入电子接受体Pd2+, 发现非离子表面活性剂体系的荧光猝灭效率提高, 阴离子及阳离子表面活性剂体系荧光猝灭效率下降. 此研究对研制基于阴离子共聚物的新型生物化学传感器具有一定的指导意义.  相似文献   

5.
水溶性荧光聚合物用于测定聚赖氨酸   总被引:1,自引:0,他引:1  
合成了一种水溶性荧光聚合物聚[5-甲氧基-2-(3-磺酰化丙氧基)-1,4-苯撑乙烯](MPS-PPV),对该聚合物进行了元素分析、红外光谱及透射电子显微镜表征.实验结果表明,聚赖氨酸(PLL)对该聚合物荧光具有明显的猝灭作用,据此建立了一种快速灵敏测定聚赖氨酸的新方法,检出限为5.0×10-10mol/L.探讨了聚赖氨酸猝灭MPS-PPV荧光的机理.  相似文献   

6.
采用 Wittig 方法制得了未封端及封端的线性聚三苯胺-对苯乙烯撑型聚合物(分别简称为:TPA-DOPPV1,TPA-DOPPV2),并对共轭聚合物进行了表征和性能测试.封端后的聚合物溶液和固体膜在紫外光照射下均发出较强的绿光.对这类聚合物在硝基化合物检测方面的应用进行了初步研究,结果表明:封端后的共轭聚合物在邻硝基甲苯(o-NT)荧光检测上的性能明显提高,当o-NT 浓度为 21.5×10-3 mol/L 时,荧光猝灭效果达到了 96%;在2,4-二硝基甲苯(DNT)、对硝基甲苯(P-NT)和对苯醌(p-BQ)蒸汽中放置 10 s 时,其薄膜的荧光猝灭效率分别达到 30%、15.6%和 3.1%.TPA-DOPPV2 的合成操作较为简便,具有一定的检测灵敏性,是一种潜在的硝基类爆炸物荧光检测材料.  相似文献   

7.
陈彦国  徐保明  何治柯  谢卫红 《化学学报》2011,69(11):1361-1367
利用出血热病毒抗体-L133/抗原-EHF对水溶性荧光共轭聚合物聚(5-甲氧基-2-(3-磺酰化)丙氧基-1,4-对苯撑乙烯), (简写为MPS-PPV)荧光的增强/猝灭作用、抗原-EHF与抗体-L133之间的特异性相互作用及作用前后荧光强度的变化, 建立了一种基于水溶性荧光共轭聚合物荧光猝灭可逆的高灵敏、均相免疫测定新方法, 实现了出血热病毒抗 原-EHF的快速、灵敏检测, 检测抗原-EHF的线性范围是4.8×10-9~5.0×10-8 mol/L, 检出限为1.7×10-9 mol/L. 实验表明, 生物分子对聚合物的荧光增强或猝灭不仅是静电作用, 而且还表现为聚合物形态构造的变化.  相似文献   

8.
以核酸适体为识别分子, 阳离子荧光共轭聚合物为报告分子, 建立了一种蛋白质检测新方法. 修饰有荧光熄灭基团的核酸适体探针通过静电作用与阳离子荧光共轭聚合物结合, 导致后者荧光熄灭. 当加入靶蛋白后, 核酸适体探针与其特异性结合, 荧光熄灭基团与阳离子荧光共轭聚合物远离, 聚合物荧光信号得以恢复. 实验结果表明, 荧光恢复程度与靶蛋白的浓度正相关. 采用该方法检测凝血酶的线性范围为17~40 nmol/L.  相似文献   

9.
利用荧光光谱研究了三磷酸腺苷(ATP)与水溶性阳离子荧光共轭聚合物的相互作用,发现加入ATP后,聚合物的荧光强度被显著猝灭,且猝灭程度与ATP的加入量成正比,据此建立了测定ATP的方法.荧光光谱的激发波长选择395 nm,发射波长为521 nm,激发狭缝宽度为10.0 nm,发射狭缝宽度为10.0 nm.在0 05 mol/L Tris-HCl缓冲溶液(pH=7.4)中,测定ATP的线性范围为8.0×10-8~1.0×10-5 mol/L; 检出限为2.0×10-8 mol/L; 回收率在93.6%~105.6%之间; 相对标准偏差在2.2%~6.9%之间.本方法用于三磷酸腺苷二钠药片和鲫鱼肉中ATP的测定,获得满意结果.  相似文献   

10.
采用Suzuki细乳液聚合以及后功能化反应,制备了季铵盐末端的水分散超支化共轭聚合物纳米粒子(HCPN-QA),用于高灵敏度和高选择性的检测2,4,6-三硝基苯酚(PA).带正电荷的季铵盐端基以及疏水的超支化共轭聚合物核心,使HCPN-QA对水中呈酸性的PA产生静电吸引与疏水富集的协同作用,产生高度灵敏的荧光猝灭响应,检测限达到0.18μg/L,猝灭常数达到6.36×10~7 L/mol,相比于有机相分散的超支化共轭聚合物纳米粒子HCPN-OMe,HCPN-QA检测限低了4个数量级,猝灭常数高出3个数量级.通过研究HCPN-QA粒径对PA检测灵敏度的影响,发现纳米粒子粒径对PA的检测灵敏度影响很小.并且,HCPN-QA对PA的猝灭响应显著高于TNT及其他硝基爆炸物,表现出很好的选择性以及竞争选择性.此外,HCPN-QA检测试纸对PA固体颗粒的检测表现出很高的灵敏度,检测限达到66 pg/mm~2.  相似文献   

11.
A cationic poly(p-phenylene vinylene) related copolymer without bulky phenylene substitutents attached to the conjugated backbone was prepared through Wittig reaction.The molecular structure and optical properties were highly investigated through ~1H-NMR,UV and PL spectroscopy.The quenching behavior was also investigated,and the results demonstrate that incomplete quenching exists,which is consistent with the cationic poly(p-phenylene vinylene) related copolymer containing bulky phenylene substitutents,p...  相似文献   

12.
The electrochemical synthesis of poly(p-phenylenevinylene) (PPV) and different modifications in the electronic distribution upon electrochemical p-doping (oxidation) and n-doping (reduction) of this polymer film have been studied in situ by resonance Raman spectroscopy, optical absorption spectroscopy and ESR spectroscopy. The polymer film has been prepared by electrochemical reduction of α,α,α′,α′-tetrabromo-p-xylene in dimethylformamide using tetraethylammonium tetrafluoroborate as the electrolyte salt. During electrochemical polymerization the position and relative intensities of the Raman bands change regularly as the chain length increases and finally converge on values reported for chemically prepared PPV. The Raman spectra for electrochemically polymerized PPV is compared to infrared-active vibration bands for electrochemically n-doped PPV. When the polymer undergoes redox reactions (doping-dedoping), shifts and broadening of Raman bands, compared to neutral PPV, are observed. Interpretation of the Raman spectra and the ESR results led to the conclusion that charge transfer in this system is mainly accomplished by polaron species formed upon doping of the polymer. In this reaction the quinoid structure is formed rather than the benzenoid structure. Electronic Publication  相似文献   

13.
Results of density-functional studies of the electronic properties of poly(p-phenylene-vinylene) (PPV) and polybutadiene are presented. The calculations were performed using a single-chain, full-potential, linearized muffin-tin orbital (LMTO)-based method. In particular, we analyze the effects on the electronic properties due to the addition of substituents to the vinylene linkage. As substituents, we concentrate on cyano and amine groups. It is found that these groups induce large changes in the band structures of these systems, particularly of the bands closest to the Fermi level. Further, the effects on the band gap and on the total energy due to the bond-length alternation of the polymer backbones, are analyzed both for unsubstituted and substituted polybutadiene. It is found that both properties depend sensitively on both the substituents attached to the chain and on the precise structure of the polymer. The substituents lead to overall redistributions of the electrons and, in particular, the disubstituted PPV is found to have a large dipole moment perpendicular to the polymer axis. For disubstituted polybutadiene we find a stronger C–C bond-length alternation than for the unsubstituted compound (polyacetylene), and the results for this compound indicate that the band gap of substituted and unsubstituted PPV depends strongly on the bond-length alternation.  相似文献   

14.
A novel poly(p‐phenylenevinylene) PPV‐based copolymer (3C‐OXD‐PPV) with electron‐deficient oxadiazole segments as the side chain has been successfully synthesized through the Gilch polymerization. The obtained copolymer is soluble in common organic solvents such as chloroform, tetrahydronfuran, and 1,1,2,2‐tetrachloroethane. The copolymer was characterized by 1H NMR, elemental analysis and GPC. TGA measurement of the copolymer shows it has good thermal stability with decomposition temperature higher than 350 °C. The absorption, electrochemical properties of the 3C‐OXD‐PPV were investigated and also compared with the properties of MEH‐PPV. The HOMO and LUMO levels of 3C‐OXD‐PPV were estimated from the electrochemical cyclic voltammograms. Bulk‐heterojunction PVCs were fabricated by using 3C‐OXD‐PPV blended PCBM as an active layer. The PCE of the PVC is 1.60% under 100 mW cm?2 AM 1.5 illumination, which indicates that 3C‐OXD‐PPV is a potential candidate for the application of polymer PVC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1003–1012, 2009  相似文献   

15.
Summary: A novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer was synthesized by a cross‐coupling polycondensation with Pd(PPh3)2Cl2 and a phase‐transfer catalyst, and was confirmed by 1H NMR and IR spectroscopy and elemental analysis. The thermal, electrochemical, and photoluminescent properties of the new copolymer have been investigated. The incorporation of triple bonds into the cyano‐substituted PPV (CN‐PPV) backbone leads to higher oxidation and reduction potentials than poly(2‐methoxy‐5‐(2‐ethylhexyloxy)‐p‐phenylene vinylene) (MEH‐PPV) and CN‐PPV, potentially making the copolymer a good electron‐transporting material for use in a light‐emitting‐diode device.

The cyclic voltammogram of the novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer synthesized here.  相似文献   


16.
A new high-efficiency light-emitting alternating copolymer of triphenylamine and pure PPV (TPA–PPV) has been designed and synthesized. The copolymer was highly soluble in common solvents. It could be spin cast onto various substrates to give highly transparent homogeneous thin films without heat treatment. The fluorescence quantum yield in benzene is almost up to 1.00. The maximum fluorescence wavelength for this alternating copolymer appeared around 470 nm. The fluorescence of TPA–PPV solution quenched by C60 was examined, and the result indicated that a strong interaction exists between TPA–PPV and C60 at the exited state. A primary single-layer LED based on ITO/TPA–PPV/Al has been fabricated, and the onset voltage is only 1.5 V and a bright green light was observed. The electroluminescence spectrum gives a peak at 510 nm when the operating voltage of 17 V was applied. The photoluminescence spectrum also appeared at the same wavelength as the electroluminescence, indicating that the same excited states are involved in the two processes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2587–2594, 1999  相似文献   

17.
Hybrid materials composed of phase‐separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block‐copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one‐dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light‐emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains.  相似文献   

18.
In many applications surfaces are modified using polymer films and the polymers used are often complex copolymers. In biomedical applications it is critical to determine the surface properties of a substrate as it is these that mediate the cellular interactions. The surface structure of copolymer films can only rarely be established from their bulk composition alone. In this study angle resolved XPS was used to build a model of the structure of copolymer films produced on glass substrates from a family of poly(acrylamide) copolymers containing cationic blocks. The thickness of the copolymer films was demonstrated to be dependent on the concentration of the polymer solution and the ratio of non‐cationic to cationic blocks in the copolymer. The data demonstrated that the cationic blocks of the copolymer preferentially segregated to the glass surface and the non‐cationic poly(acrylamide) blocks preferentially segregated to the air–vacuum interface. A low concentration of the cationic functional groups was present throughout the poly(acrylamide) layer and it was suggested that this resulted from a small fraction of the cationic blocks being pulled into the poly(acrylamide) layer at points along the polymer chain where the two blocks are connected. Evidence of a thin surface hydrocarbon contamination layer was also observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, the optical, electrochemical, electrolumiscent, and photovoltaic properties of a series of poly(p‐phenylene vinylene) (PPV) derivatives bearing different dendritic pendants, poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE‐PPV), poly{2‐[2′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD‐PPV), poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV), poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (BE‐co‐MEH‐PPV), and poly{2‐[2′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene}‐co‐poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene] (BD‐co‐MDMO‐PPV), were investigated. The steric pendants strongly affect the absorption spectra, photoluminescence (PL) sepctra, the onset oxidation/reduction potentials, and further affect the electrolumiscent and photovoltaic properties. Copolymerization can reduce the steric effect and improve the electrolumiscent and photovoltaic properties. The brightness of light‐emitting diodes base on copolymer BE‐co‐MEH‐PPV and BD‐co‐MDMO‐PPV reached 3988 and 3864 cd/m2, respectively, much higher than that based on homopolymer BE‐PPV (523 cd/m2) and BD‐PPV (333 cd/m2), also higher than that based on MEH‐PPV (3788 cd/m2). The power conversion efficiency (PCE) of solar cells based on BE‐co‐MEH‐PPV and BD‐co‐MDMO‐PPV reached 1.41, 0.76%, respectively, much higher than that based on BE‐PPV (0.24%) and BD‐PPV (0.14%). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A novel amine‐functionalized polycarbonate was synthesized and its excellent gene transfection ability in vitro is demonstrated. In the framework of adapting the cationic polycarbonate for in vivo gene delivery applications, here the design and synthesis of biodegradable block copolymers of poly(ethylene glycol) (PEG) and amine‐functionalized polycarbonate with a well‐defined molecular architecture and molecular weight is achieved by metal‐free organocatalytic ring‐opening polymerization. Copolymers in triblock cationic polycarbonate‐block‐PEG‐block‐cationic polycarbonate and diblock PEG‐block‐cationic polycarbonate configurations, in comparison with a non‐PEGylated cationic polycarbonate control, are investigated for their influence on key aspects of gene delivery. Among the polymers with similar molecular weights and N content, the triblock copolymer exhibit more favorable physicochemical (i.e., DNA binding, size, zeta‐potential, and in vitro stability) and biological (i.e., cellular uptake and luciferase reporter gene expression) properties. Importantly, the various cationic polycarbonate/DNA complexes are biocompatible, inducing minimal cytotoxicities and hemolysis. These results suggest that the triblock copolymer is a more useful architecture in future cationic polymer designs for successful systemic therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号