共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Copper(II) salts were reacted with two diamino-dithioether ligands, i.e. 1,3-di(o-aminophenylthio)propane (abbreviated H2L1) and 1,2-di(o-aminophenylthio)xylene (abbreviated H2L2). Mixtures of copper(I) and copper(II) complexes were obtained with Cl– and ClO
4
–
counterions. The major products were the copper(I) complexes, which were obtained pure after recrystallisation from MeCN-MeOH. The ligands lose two protons from the amine functions to form copper(I) complexes of general formula [CuL]X, where X = ClO
4
–
or Cl–. The complexes were oxidised to [CuL]X2 with H2O2 in DMF. Cu(NO3)2 on the other hand gave [CuH2LNO3]NO3. 相似文献
2.
Three new ligands with an indole substituent tethered to a pyridylalkylamine or imidazolylalkylamine metal-binding domain have been prepared from tryptamine. Copper(II) complexes have been prepared and characterized, three by X-ray crystallography. Electrochemistry has been used to ascertain the mutual effects of the copper and indole redox centres upon each other. 相似文献
3.
Jorge PasánJoaquín Sanchiz Francesc LloretMiguel Julve Catalina Ruiz-Pérez 《Polyhedron》2011,30(15):2451-2458
The use as coligands of the nicotinamide (nia) and isonicotinamide (inia) molecules in the complex formation between copper(II) and phenylmalonate [Phmal = dianion of phenylmalonic acid] yielded the compounds of formula [Cu(inia)(Phmal)(H2O)] (1) and [Cu(inia)(Phmal)(H2O)]n (2). Although single crystals of 1 of appropriate size were grown, their unresolved twinning and space group ambiguity prevented a satisfactory X-ray structure determination. The crystal structure 2 consists of corrugated layers of copper(II) ions with intralayer carboxylate-phenylmalonate bridges in the anti-syn (equatorial-apical) coordination mode. A water molecule and the isonicotinamide group are coordinated to the copper atom in trans position being located above and below each layer. The Phmal ligand adopts the bidentate/monodentate coordination mode with the bidentate coordination involving one equatorial and one apical bonds, a feature which is unprecedented for the copper(II) complexes with alkyl(aryl)substituted-malonate derivatives. Intra- and interlayer H-bonds together with intralayer π-π type interactions between the phenyl and inia aromatic groups contribute to the stabilization of the three-dimensional supramolecular structure. Magnetic susceptibility measurements of complexes 1 and 2 in the temperature range 1.9-300 K are quasi identical and they correspond to a very weak ferromagnetic interaction between the copper(II) ions [J = +0.091(2) cm−1 (1) and +0.097(2) cm−1 (2) through the spin Hamiltonian for an isotropic square grid of interacting spin doublets which is defined as H = −JΣiSi · Si+1]. The strong similarity in the magnetic properties of 1 and 2 allow us to conclude that although they are not isostructural species, their structures have to be very close. 相似文献
4.
《Journal of Coordination Chemistry》2012,65(22):3693-3702
Two copper(II) complexes [CuL1Cl]n (1) and [CuL2Cl] (2) with singly condensed tridentate Schiff-base ligands [HL1 = 6-amino-3-methyl-1-phenyl-4-azahex-3-en-1-one and HL2 = 6-diethylamino-3-methyl-1-phenyl-4-azahex-3-en-1-one] have been synthesized and structurally characterized by X-ray crystallography. Complex 1 is a single-chloro-bridged one-dimensional polymer, whereas 2 is a monomeric square-planar complex. The H-bonding interactions of the amine hydrogen and the non-bonding interactions of phenyl groups in the Schiff base play important roles for the structural variations. 相似文献
5.
Samudranil Pal 《Journal of Chemical Sciences》2002,114(4):417-430
The coordination chemistry of copper(II) with tridentate aroylhydrazones is briefly discussed in this article. Two types of
aroylhydrazones derived from aroylhydrazines and ortho-hydroxy aldehydes or 2-pyridine-carboxaldehyde have been used. The
characterization of the complexes has been performed with the help of various physico-chemical techniques. Solid state structural
patterns have been established by X-ray crystallography. In the solid state, structural varieties of these complexes are seen
to range from monomeric, dimeric, polymeric and one-dimensional self-assembly via hydrogen bonds and π-π interactions. EPR
spectroscopy and variable temperature magnetic susceptibility measurements have been used to reveal the nature of the coordination
geometry and magnetic characteristics of these complexes. 相似文献
6.
Novel macrocyclic bis(disulfide)tetramine ligands and several Cu(II) and Ni(II) complexes of them with additional ligands have been synthesized by the oxidative coupling of linear tetradentate N2S2 tetramines with iodine. Facile demetalation of the Ni(II) oxidation products affords the free 20-membered macrocycles meso-9 and rac-9 and the 22-membered macrocycle 16, all of which are potentially octadentate N4S4 ligands. X-ray structure analyses reveal distinctly different conformations for the two isomers of 9; meso-9 shows a stepped conformation in profile with the disulfide groups corresponding to the rise of the step, whereas rac-9 exhibits a V conformation with the disulfide groups near the vertex of the V. No metal complexes of rac-9 have been isolated. Crystallographic studies of three Cu(II) complexes reveal that depending upon the size of the macrocyclic ligand and the nature of the additional ligands (I-, NCO-, and CH3CN), the Cu(II) coordination geometry shows considerable variation (plasticity), with substantial changes in the Cu(II)-disulfide bonding. Thus, a diiodide salt contains six-coordinate Cu(II) to which all four bridging disulfide sulfur atoms form strong equatorial bonds. In contrast, isocyanato complexes of the 20- and 22-membered macrocycles exhibit trigonal-bipyramidal Cu(II) and distorted cis-octahedral Cu(II) geometries, respectively, having only one and no short equatorially bound sulfur atoms. The coordination geometry of the latter complex can also be described as four-coordinate seesaw with two semicoordinated S(disulfide) ligands. Disulfide-->Cu(II) ligand-to-metal charge transfer absorptions of both isocyanato-containing Cu(II) species appear too weak to observe, probably because of poor overlap of the sulfur orbitals with the Cu(II) d-vacancy. The dual disulfide-bridged Ni(II) units of the crystallographically characterized octahedral Ni(II) complex of meso-9 with axial iodide and acetonitrile ligands promote substantial antiferromagnetic coupling (J = -13.0(2) cm-1). 相似文献
7.
Ainscough EW Brodie AM Depree CV Moubaraki B Murray KS Otter CA 《Dalton transactions (Cambridge, England : 2003)》2005,(20):3337-3343
The reaction of hexakis(2-pyridyloxy)cyclotriphosphazene (L) and hexakis(4-methyl-2-pyridyloxy)cyclotriphosphazene (MeL) with copper(ii) chloride afford the complexes [CuLCl(2)], [(CuCl(2))(2)(MeL)], [CuLCl]PF(6) and [Cu(MeL)Cl]PF(6). The single-crystal X-ray structure of [CuLCl(2)] shows the copper ion to be in a square based pyramidal distorted trigonal bipyramidal (SBPDTBP) environment (tau= 0.47) with L acting as a kappa(3)N donor, coordinating via the nitrogen atoms from two non-geminal pyridyloxy pendant arms, a nitrogen atom in the phosphazene ring and two chloride ions. In the dimetallic complex, [(CuCl(2))(2)(MeL)], the geometry about both (symmetry related) copper(ii) centres is also SBPDTBP (tau= 0.57) with a 'N(3)Cl(2)' donor set. In the monocation of [CuLCl]PF(6), L acts as a kappa(5)N donor, bonding to the copper(ii) centre through the nitrogen atoms of four pyridyloxy pendant arms, a phosphazene ring nitrogen atom and a chloride ion to give an elongated rhombic octahedral coordination sphere. The phosphazene ring atoms remain virtually coplanar in all three structures as a consequence of the phenoxy-hinge, which links the pyridine pendant donors to the cyclotriphosphazene platform, allowing the formation of six-membered chelate rings. The spectroscopic (mass spectral, EPR and electronic) and magnetic properties of the complexes are discussed. The EPR and variable temperature magnetic susceptibility results for the dicopper complex, [(CuCl(2))(2)(MeL)], point to a very weak electronic interaction between the metal atoms. 相似文献
8.
Two copper(II) complexes of the saccharinate anion (sac) with piperazine (ppz) and N-(2-aminoethyl)piperazine (aeppz), namely [Cu(sac)2(ppz)(H2O)]n (1) and trans-[Cu(sac)2(aeppz)2] (2), have been synthesized and characterized by elemental analyses, UV–Vis, FT-IR, TGA/DTA, X-ray diffraction and magnetic measurements. The ppz ligands in 1 bridge the copper(II) centers through both nitrogen atoms to form a 1D helical chain structure and the distorted trigonal-bipyramidal coordination geometry at each copper center is completed by an aqua and a pair of N-bonded sac ligands. The helical chains are linked by Ow–H?O hydrogen bonds to build a 2-D network. In complex 2, copper(II) ions are octahedrally coordinated by two sac anions and two neutral aeppz ligands, displaying a distorted octahedral coordination. Sac is O-bonded via the carbonyl group, while ppzea acts as a N,N′-bidentate chelating ligand. The molecules are connected by N–H?N and N–H?O hydrogen bonds, forming a linear chain. In the thermal decomposition of both complexes, the removal of the aqua and ppz or aeppz ligand takes place endothermically in the first stages and the sac moiety undergoes highly exothermic decomposition at higher temperatures to give CuO. 相似文献
9.
Ahmad R. Esmaeilbeig Hamid R. Samouei Mehdi Rashidi 《Journal of organometallic chemistry》2008,693(15):2519-2526
The phosphite complexes cis-[PtMe2L(SMe2)] in which L = P(OiPr)3, 1a, or L = P(OPh)3, 1b, were synthesized by the reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of L. If 4 equiv. of L was used the bis-phosphite complexes cis-[PtMe2L2] in which L = P(OiPr)3, 2a, or L = P(OPh)3, 2b, were obtained. The reaction of cis-[Pt(p-MeC6H4)2(SMe2)2] with 2 equiv. of L gave the aryl bis-phosphite complexes cis-[Pt(p-MeC6H4)2L2] in which L = P(OiPr)3, 2a′, or L = P(OPh)3, 2b′. Use of 1 equiv. of L in the latter reaction gave the bis-phosphite complex along with the starting complex in a 1:1 ratio.The complexes failed to react with MeI. The reaction of cis,cis-[Me2Pt(μ-SMe2)2PtMe2] with 2 equiv. of the phosphine PPh3 gave cis-[PtMe2(PPh3)2] and cis-[PtMe2(PPh3)(SMe2)] along with unreacted starting material. Reaction of cis-[PtMe2L(SMe2)], 1a and 1b with the bidentate phosphine ligand bis(diphenylphosphino)methane, dppm = Ph2PCH2PPh2, gave [PtMe2(dppm)], 8, along with cis-[PtMe2L2], 2. The reaction of cis-[PtMe2L(SMe2)] with 1/2 equiv. of the bidentate N-donor ligand NN = 4,4′-bipyridine yielded the binuclear complexes [PtMe2L(μ-NN)PtMe2L] in which L = P(OiPr)3, 3a, or L = P(OPh)3, 3b.The complexes were fully characterized using multinuclear NMR (1H, 13C, 31P, and 195Pt) spectroscopy. 相似文献
10.
R. N. Patel Nripendra Singh R. P. Shrivastava K. K. Shukla P. K. Singh 《Journal of Chemical Sciences》2002,114(2):115-124
Equilibrium and solution structural study of mixed-metal-mixed-ligand complexes of Cu(II), Ni(II) and Zn(II) with L-cysteine,
L-threonine and imidazole are conducted in aqueous solution by potentiometry and spectrophotometry. Stability constants of
the binary, ternary and quaternary complexes are determined at 25 ±1°C and in I= 0.1 M NaClO4. The results of these two methods are made selfconsistent, then rationalized assuming an equilibrium model including the
species H3A, H2A, A, BH, B, M(OH), M(OH)2, M(A), MA(OH), M(B), M(A)(B), M2(A)2(B), M2(A)2(B-H), M1M2(A)2(B) and M1M2(A)2(B-H) (where the charges of the species have been ignored for the sake of simplicity) (A = L-cysteine, L-threonine, salicylglycine,
salicylvaline and BH = imidazole). Evidence of the deprotonation of BH ligand is available at alkalinepH. N1H deprotonation of the bidentate coordinated imidazole ligand in the binuclear species atpH > 70 is evident from spectral measurements. Stability constants of binary M(A), M(B) and ternary M(A)(B) complexes follow
the Irving-Williams order. 相似文献
11.
《Journal of Coordination Chemistry》2012,65(20):2165-2176
Three new copper(II) complexes [CuL1N3]2 (1), [CuL2N3] (2) and [CuL3N3] (3) with three very similar tridentate Schiff base ligands [HL1?=?6-diethylamino-3-methyl-1-phenyl-4-azahex-3-en-1-one, HL2?=?6-amino-3-methyl-1-phenyl-4-azahex-3-en-1-one and HL3?=?6-amino-3-methyl-1-phenyl-4-azasept-3-en-1-one] have been synthesized and structurally characterized by X-ray crystallography. In complex 1 half of the molecules are basal-apical, end-on azido bridged dimers and the remaining half are square-planar monomers whereas all the molecules in complexes 2 and 3 are monomers with square-planar geometry around Cu(II). A competition between the coordinate bond and H-bond seems to be responsible for the difference in structure of the complexes. 相似文献
12.
An examination of the copper(II) complexes of some cyclic tetra-azatetra-acetic acids has shown that the 1,4,7,10-tetra-azacyclotridecane-N,N',N',N'-tetra-acetic acid complex has an unusually high molar absorptivity and other favourable characteristics which make this ligand a convenient reagent for the fast and easy spectrophotometric determination of moderately small quantities of copper. 相似文献
13.
Carolina V. Barra Fillipe V. Rocha Adelino V. G. Netto Regina C. G. Frem Antonio E. Mauro Iracilda Z. Carlos Sandra R. Ananias Marcela B. Quilles 《Journal of Thermal Analysis and Calorimetry》2011,106(2):489-494
This study describes the synthesis, IR, 1H, and 13C{1H} NMR spectroscopic as well the thermal characterization of the new palladium(II) pyrazolyl complexes [PdCl2(HmPz)2] 1, [PdBr2(HmPz)2] 2, [PdI2(HmPz)2] 3, [Pd(SCN)2(HmPz)2] 4 {HmPz = 4-methylpyrazole}. The residues of the thermal decomposition were identified as Pd0 by X-ray powder diffraction. From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 1 > 2 > 4 ≈ 3. The cytotoxic activities of the complexes and the ligand were investigated against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07) and compared to cisplatin under the same experimental conditions. 相似文献
14.
Carolina V. Barra Fillipe V. Rocha Adelino V. G. Netto B. Shimura Regina C. G. Frem Antonio E. Mauro Iracilda Z. Carlos Sandra R. Ananias Marcela B. Quilles 《Journal of Thermal Analysis and Calorimetry》2011,106(2):483-488
The pyrazole ligand 3,5-dimethyl-4-iodopyrazole (HdmIPz) has been used to obtain a series of palladium(II) complexes (1–4) of the type [PdX2(HdmIPz)2] {X = Cl− (1); Br− (2); I− (3); SCN− (4)}. All compounds have been isolated, purified, and characterized by means of elemental analysis, IR spectroscopy, 1H and 13C{1H}-NMR experiments, differential thermal analysis (DTA), and thermogravimetry (TG). The TG/DTA curves showed that the compounds
released ligands in the temperature range 137–605 °C, yielding metallic palladium as final residue. The complexes and the
ligand together with cisplatin have been tested in vitro by MTT assay for their cytotoxicity against two murine cancer cell
lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07). 相似文献
15.
Laura Valencia Paulo Pérez-Lourido Alejandro Macías 《Journal of organometallic chemistry》2009,694(14):2185-133
The coordination behaviour of a series of pyridyl azamacrocyclic ligands, some of them containing cyanomethyl and cyanoethyl pendant-arms, towards Mn(II) ion was studied. All the complexes were characterized by microanalysis, LSI mass spectrometry, IR, UV-Vis spectroscopy and magnetic measurements. Crystal structures of [MnL1][MnBr4] (1), [MnL3][MnBr4] · 2CH3CN (3), [Mn2L5Br4] · 2CH3CN (5) and [Mn2L6Br4] (6) complexes have been determined. The X-ray studies show the presence of an ionic mixed octahedral-tetrahedral complex for 1 and 2, with the manganese ion of the cation complex, endomacrocyclicly coordinated by the six nitrogen donor atoms from the macrocyclic backbone in a distorted octahedral geometry. Instead, the complexes 5 and 6 are dinuclear, and both manganese ions are coordinated by one pyridinic and two amine nitrogen atoms from the macrocyclic backbone and two bromide ions, being the geometry around the metal better described as distorted square pyramidal. In all cases, the nitrile pendant-arms do not show coordination to the metal ion. 相似文献
16.
Angel A. Recio Despaigne Jeferson G. da Silva Ana Cerúlia M. do Carmo Flavio Sives Oscar E. Piro Eduardo E. Castellano Heloisa Beraldo 《Polyhedron》2009,28(17):3797-3803
In the present work 2-formylpyridine-para-chloro-phenyl hydrazone (H2FopClPh) and 2-formylpyridine-para-nitro-phenyl hydrazone (H2FopNO2Ph) were obtained, as well as their copper(II) and zinc(II) complexes [Cu(H2FopClPh)Cl2] (1), [Cu(2FopNO2Ph)Cl] (2), [Zn(H2FopClPh)Cl2] (3) and [Zn(H2FopNO2Ph)Cl2] (4). Upon re-crystallization in DMSO:acetone conversion of 2 into [Cu(2FopNO2Ph)Cl(DMSO)] (2a) and of 4 into [Zn(2FopNO2Ph)Cl(DMSO)] (4a) occurred. The crystal structures of 1, 2a, 3 and 4a were determined. 相似文献
17.
Twelve new copper(II) complexes in which N,N′-bis-(2-pyridylmethyl)-oxamidatocopper(II) or N,N′-bis(2-pyridylethyl)-oxamidatocopper(II) coordinates as a bidentate ligand have been isolated and characterized. These complexes have a structure bridged by the oxamide group (including two tetranuclear complexes formed by olation of two binuclear complexes, of. Fig. 1), and possess Cu? Cu interaction resulting in a sub-normal magnetic moment at room temperature. In one of them, [Cu2(PMoxd) (bipy)2] (NO3)2 (cf. Fig. 2), each copper(II) ion has a five-coordinated environment. 相似文献
18.
Suning Wang 《Journal of Cluster Science》1995,6(4):463-484
Copper complexes with aminoalcoholato ligands have attracted much attention recently because of their potential applications in ceramic materials. This review deals with polynuclear copper (II) complexes containing bidentate and triden-tate aminoalcoholato ligands. The focus of this article is on the synthesis, structure, and magnetic properties of polynuclear copper (II) complexes obtained recently by our group. Some relevant work reported previously by other researchers is also included.Dedicated to Professor Jiaxi Lu on the occasion of his 80th birthday. 相似文献
19.
M. I. Gel’fman N. A. Starkina O. V. Salishcheva 《Russian Journal of Inorganic Chemistry》2007,52(10):1557-1560
The reaction of nitrite-bridged binuclear platinum and palladium complexes and KBr in aqueous solution is studied. It is shown that the Pt-O-N bridging bond dissociates during the reaction to yield two mononuclear complexes. Rate constants of the reaction at 15°C are determined. 相似文献
20.
Behzad Soltani Moayad Hossaini Sadr James T. Engle Christopher J. Ziegler Sang Woo Joo Younes Hanifehpour 《Transition Metal Chemistry》2012,37(8):687-694
Three new binuclear copper complexes of formulae $ \left[ {{\text{Cu}}_{2}^{\text{II}} {\text{Pz}}_{2}^{\text{Me3}} {\text{Br}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (1), $ \left[ {{\text{Cu}}_{ 2}^{\text{II}} {\text{Pz}}_{2}^{\text{Ph2Me}} {\text{Cl}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (2) and $ \left[ {{\text{Cu}}_{2}^{\text{II}} \left( {{\text{Pz}}^{\text{PhMe}} } \right)_{ 4} {\text{Cl}}_{ 4} } \right] $ (3) (PzMe3?=?3,4,5-trimethylpyrazole, PzPh2Me?=?4-methyl-3,5-diphenylpyrazole and PzPhMe?=?3-methyl-5-phenylpyrazole) have been synthesized and characterized by chemical analysis, FTIR and 31P NMR spectroscopy and single-crystal X-ray diffraction. Complex 1 is a doubly bromo-bridged dimer, while complexes 2 and 3 are chloro-bridged dimers. The Cu(II) centers are in a distorted tetrahedral geometry for 1 and 2 and a distorted square pyramidal N2Cl3 environment for 3. 相似文献