首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surface properties of three undecyl oxazoline homopolymers and two phenyl/undecyl oxazoline block copolymers (as comparison) were studied. After coating on glass slides and annealing, all films had a low critical surface energy of 21 dynes/cm. Water contact angles were higher than 107° for the most hydrophobic films. The deduction that the polymer surfaces contained close-packed methyl groups was further confirmed by electron spectroscopy chemical analysis (ESCA) angle profiling on an annealed undecyl oxazoline homopolymer film. A model was developed for the variation of elemental ratios as a function of photoelectron take-off angle. This verified that the polymer films had the polymer backbones parallel to the surface with the undecyl tails oriented toward the surface. When these block and homopolymers were coated on copy paper and glass slides, the peel strengths of pressure-sensitive adhesives with these surfaces were very low for short dwell times at room temperature. At long dwell times or at elevated temperatures, the peel strengths remained low for the homopolymers but increased greatly for the block copolymers to values higher than those in the tape on glass. After 24 h at 70°C, ESCA analysis showed that the adhesive diffused into the phenyl block domains of the diblock copolymer, generating high peel strength and cohesive failure. However, under the same annealing conditions, the triblock copolymer showed adhesive failure while peel strength increased. ESCA analysis showed very litle diffusion of the adhesive into the triblock copolymer. The homopolymers were stable toward vinyl acetate type adhesives even at elevated temperature; they were abhesive up to 100°C with no interdiffusion.  相似文献   

2.
While incompatible block copolymers commonly assemble into several established classical or complex morphologies, highly asymmetric poly(ferrocenyldimethylsilane-b-dimethylsiloxane) (PFS-b-PDMS) diblock copolymers can also self-organize into high-aspect-ratio nanotubes with PDMS corona in the presence of PDMS-selective organic solvents. Exposure of these nanotubes on a carbon substrate to supercritical carbon dioxide (scCO2), also a PDMS-selective solvent, appears to promote partial dissolution of the copolymer molecules. At sufficiently high copolymer concentrations, the dissolved molecules subsequently re-organize within the scCO2 environment to form new copolymer nanostructures that redeposit on the substrate upon scCO2 depressurization. Transmission electron microscopy reveals that micelles form under all the conditions examined here, whereas nanotubes coalesce and vesicles develop only at relatively high temperatures. The extent to which the copolymer nanotubes dissolve and the size distribution of the replacement micelles are sensitive to exposure conditions. These results suggest that the phase behavior of PFS-b-PDMS diblock copolymers in scCO2 may be remarkably rich and easily tunable.  相似文献   

3.
We describe a generic method for polymer surface modification and functionalization that is applicable for substrates of arbitrary shape. The method involves the deposition of monolayer and submonolayer films of photoactive block copolymers from supercritical fluids. Poly(styrene-b-tert-butyl acrylate), poly(S-b-tBA), block copolymer monolayers form spontaneously on polystyrene substrates by adsorption from scCO2 when hexane is used as a cosolvent. Atomic force microscopy indicates the films are flat and without pores after modification. Ethylene glycol contact angles increase linearly with deposition pressure until a constant value, equal to that of pure P tBA, is attained at pressures of 18 MPa or greater at 40 degrees C. This trend mimics the change in block copolymer solubility with pressure and indicates that the block copolymer self-assembles and orders at the surface, presenting a P tBA layer at the air interface with the PS block orienting toward the PS substrate. The P tBA layer thickness, determined by angle dependent X-ray photoelectron spectroscopy, reaches a saturated monolayer value of ca. 2 nm for pressures of 18 MPa and higher, consistent with the thickness expected for unperturbed PtBA chains comprising a wet brush. This concept for polymer surface modification initially produces a hydrophobic surface due to surface adsorption of the low surface tension PtBA block, but can also be used to prepare hydrophilic, functional surfaces, either modified or patterned with carboxylic acid groups, by photolytic or acid catalyzed deprotection/hydrolysis of the tert-butyl ester groups.  相似文献   

4.
Functionalized alkanethiols have been self-assembled on gold to modify the wetting properties of the surface and promote or hinder the adsorption of block copolymers containing both hydrophobic and hydrophilic blocks. X-ray photoelectron spectroscopy (XPS) studies of spin-coated polyethylene-block-poly(ethylene oxide) (PE-b-PEO) copolymers on 16-mercaptohexadecanoic acid (MHDA)-, octadecanethiol (ODT)-, and 1H,1H,2H,2H-perfluorodecanethiol (PFDT)-covered surfaces have been performed. In the case of an 80 wt % PEO block copolymer, spin-coating on a gold surface precovered with MHDA results in a polymer film thick enough to completely attenuate Au 4f photoelectrons; spin-coating on the more hydrophobic ODT and PFDT monolayers leads to significantly thinner polymer films and incomplete attenuation of the gold photoelectrons. The opposite results are observed when a 20 wt % PEO block copolymer is used. Angle-resolved XPS studies of the 80 wt % PEO block copolymer spin-coated onto an MHDA-covered surface indicate that the PE blocks of the polymer segregate to the near-surface region, oriented away from the hydrophilic carboxylic acid tails of the monolayers; the surface concentration of PE is further enhanced by annealing at 90 degrees C. Microcontact printing and dip-pen nanolithography have been used to pattern gold surfaces with MHDA, and the surfaces have been backfilled with ODT or PFDT, such that the unpatterned regions of the surface are covered with hydrophobic monolayers. In the case of backfilling with PFDT, spin-coating the 80 wt % PEO copolymer onto these patterned surfaces and subsequent annealing results in the block copolymer preferentially adsorbing on the MHDA-covered regions and forming well-defined patterns that mimic the MHDA pattern, as determined by scanning electron microscopy and atomic force microscopy. Significantly worse patterning, characterized by micron-sized polymer droplets, results when the surface is backfilled with ODT instead of PFDT. Using PFDT and MHDA, polymer features having widths as small as 500 nm have been formed. These studies demonstrate a novel method to pattern block copolymers with nanoscale resolution.  相似文献   

5.
Graft copolymers containing nonpolar main chains and polar side chains capable of acid-base interaction show surface property variations depending on the sample preparation methods. A series of polypropylene-graft-poly(ethylene glycol)s were synthesized and their surface property variations were studied using surface analysis techniques, such as surface contact angle measurement and X-ray photoelectron spectroscopic analysis. Molding against various substrates, dip-coating, vacuum annealing, and water-contact techniques were employed for the experiment. Different surfaces were obtained depending on the degree of acid-base interaction between the polymer surface and interfacing phase. These surface property variations were concluded to be the result of minimum interfacial free energy formation. Copyright 2001 Academic Press.  相似文献   

6.
Superhydrophobic aluminum surfaces with excellent corrosion resistance were successfully prepared by electrospinning of a novel fluorinated diblock copolymer solution. Micro- and nanostructuration of the diblock copolymer coating was obtained by electrospinning which proved to be an easy and cheap electrospinning technology to fabricate superhydrophobic coating. The diblock copolymer is made of poly(heptadecafluorodecylacrylate-co-acrylic acid) (PFDA-co-AA) random copolymer as the first block and polyacrylonitrile (PAN) as the second one. The fluorinated block promotes hydrophobicity to the surface by reducing the surface tension, while its carboxylic acid functions anchor the polymer film onto the aluminum surface after annealing at 130 °C. The PAN block of this copolymer insures the stability of the structuration of the surface during annealing, thanks to the infusible character of PAN. It is also demonstrated that the so-formed superhydrophobic coating shows good adhesion to aluminum surfaces, resulting in excellent corrosion resistance.  相似文献   

7.
In this work, Monte Carlo simulations have been carried out to investigate the swelling stability and interlayer structures of alkylammonium-modified montmorillonite both in vacuum and in supercritical CO(2) (scCO(2)) fluid. In the vacuum (dry) condition, the stable spacing for this kind of organoclay was determined based on the energy minimum. In the stable spacing, the corresponding interlayer structure of dry organoclay is the monolayer arrangement with the intercalated surfactant chains lying parallel to the silicate surface. In scCO(2) fluid medium, the normal pressures within the organoclay gallery and the swelling free energy have been obtained from Gibbs ensemble Monte Carlo simulation. The mechanically and thermodynamically stable spacings of the organoclay have been determined. As compared with the case in vacuum, the simulation shows that the swelling of the organoclay is thermodynamically favorable in the environment of scCO(2) fluid. The interlayer structure and conformation have been used to analyze the mechanism of swelling. The headgroups of surfactant cations are distributed close to the clay surfaces. The presence of CO(2) molecules within the clay gallery can cause a specific steric arrangement of the long-chain alkylammonium cations.  相似文献   

8.
We describe the preparation of surfaces with controlled surface chemistry and topology combining both surface segregation of block copolymers and “breath figures” formation. For that purpose, an amphiphilic ABC triblock copolymer, that is, poly(2,3,4,5,6‐pentafluorostyrene)‐b‐polystyrene‐b‐poly[poly(ethylene glycol) methyl ether methacrylate] (PS5F21b‐PS31b‐PPEGMA38) was mixed with high molecular weight polystyrene and spin coated in a moist atmosphere. As demonstrated by X‐ray photoelectron spectroscopy and atomic force microscopy analysis, the surfaces exhibit spherical holes with diameters between 100 and 300 nm. The holes, enriched in triblock copolymer, exhibit variable chemical composition and topography depending on the environmental conditions. The surface functionality could be reversibly modulated: whereas under humid conditions the PPEGMA hydrophilic block reorients towards the surface, annealing to dry air directs the PS5F fluorinated block to the interface. Equally, surfaces annealed to humid air changed their topography from holes to islands depending on the extent of swelling of the PPEGMA block. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2262–2271, 2009  相似文献   

9.
Flat films of methyl methacrylate-fluoroalkyl methacrylate copolymers were prepared, and their hydrophobicity was investigated. It was revealed that the F concentration directly affects the static hydrophobicity on the flat polymer surface in a systematic manner. Furthermore, the sliding behavior of a water droplet on these surfaces depends on the static hydrophobicity; the sliding motion changes from constant velocity to constant acceleration with an increase in the water contact angle.  相似文献   

10.
 The wetting of well-characterized heterogeneous surfaces of block copolymers has been studied by low-rate dynamic contact angle measurements using axisymmetric drop-shape analysis. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to investigate the roughness, the heterogeneity and the chemical composition of the surfaces. By changing the block length of polysulfone and semifluorinated polyester segments in the block copolymers, the surface heterogeneity of thin films prepared on silicon wafers could be controlled. Tapping-mode AFM measurements showed that soft, hydrophobic domains of varying size on the submicrometer length scale were obtained on these surfaces (60–250 nm). The mean roughness was of the order of several nanometers. The results of the contact angle measurements showed that neither roughness nor heterogeneity had a significant effect on the advancing contact angle of water, at the scale of the features present; however, the contact angle hysteresis increased with increasing percentage of the soft domains. We assume that liquid retention by the solid upon retraction of the three-phase line is the main cause for the observed increase in contact angle hysteresis. Concerning the molecular composition of these block copolymer surfaces, angle-resolved XPS analysis showed a surface segregation of fluorine within the surface region. A direct correlation was found between the fluorine content of the block copolymer surfaces and the advancing contact angle of water. Received: 26 May 2000 Accepted: 3 January 2001  相似文献   

11.
Hydrophobic and oleophobic surfaces with multi-scale structures were prepared on epoxy coating surfaces by using a facile process with fluorosilicone copolymer and SiO2 nano-particles. The fluorosilicone copolymers were synthesized using perfluoroalkyl acrylate (FA), vinyltriethoxysilane (VTES) and styrene (St) as comonomers via radical emulsion polymerization. In this paper, the surface properties of epoxy coating modified by fluorosilicone copolymer and SiO2 nano-particles were analyzed by using the contact angle measurement. The results showed that the modified epoxy coating surface exhibited not only excellent hydrophobicity but also oleophobicity, the water contact angle reached as high as 149° and the oil (atoleine) contact angle 101°, respectively.  相似文献   

12.
含氟丙烯酸酯共聚物制备超疏水表面及其形成机理的研究   总被引:7,自引:0,他引:7  
魏海洋  李欣欣  王康  贺文潇  韩哲文 《化学学报》2008,66(12):1470-1476
以丙烯酸全氟烷基乙基酯和甲基丙烯酸甲酯为共聚单体, 分别以用微乳液聚合法和溶液聚合法制备的无规共聚物和用可逆加成-断裂链转移制备的嵌段共聚物作为成膜共聚物, 并以1,1,2-三氟三氯乙烷作为溶剂, 采用溶剂挥发成膜法可以直接制备出超疏水膜, 聚合物膜对水的接触角可达160°. 改变聚合物结构和成膜条件, 探讨了该类超疏水膜的形成机理和影响因素. 发现膜的表面形貌和疏水性与共聚物的组成、结构、分子量以及成膜条件密切相关, 随着共聚物中氟含量的增大, 膜的表面形貌都趋于平滑; 而且, 无规共聚物比嵌段共聚物更易形成粗糙度好的膜; 同时, 较大的聚合物分子量和适宜的高的成膜温度都对形成粗糙结构有利.  相似文献   

13.
Control of the crystallization of conjugated polymers is of critical importance to the performance of organic electronics, such as organic photovoltaic devices, due to the effect on charge separation and transport, particularly for all‐polymer devices. The block copolymer poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF), which has matched crystallization temperatures for each block, is used to study the effects of processing history on resulting crystallization. For longer annealing times and rapid quenching to room temperature, P3DDT crystals are preferred whereas for shorter annealing times and slower quenching, PF crystals are preferred. Both crystal forms are evidenced for long annealing time and slow quenching. Additionally, for room temperature annealing in the presence of a chloroform vapor, PF crystals are found in the PF β phase with the predominant crystal peak oriented perpendicular to the thermally annealed case. These results will provide guidance for optimizing annealing strategies for future donor/acceptor block copolymer photovoltaic devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 900–906  相似文献   

14.
The surface properties and abhesion of both N/Si and U/Si series of random copolymers were studied by contact angle and peel strength measurements. When these copolymers are coated on clean glass slides, the contact angles of water on the polymer films are over 105° for copolymers with less than 50 mol % of Si , and 98-104° for those with more than 50 mol % of Si. All the polymers have similar critical surface energies, 21 dyn/cm (from hydrocarbon probes) and 20 dyn/cm (from EtOH/H2O probes), within the experimental error. This demonstrates that the amide groups in the polymer backbones are buried and all the polymers have methyl surfaces. The copolymers with less than 50 mol % Si (for N/Si copolymers) or 20 mol % (for U/Si copolymers) are stable and show good abhesive properties toward Scotch magic tape at or below 50°C. The peel strengths of Scotch magic tape with the copolymer coated slides rise dramatically as the annealing temperatures approach to the melting points of the polymers.  相似文献   

15.
采用XPS与接触角法研究氟聚合物表面结构与性能   总被引:6,自引:0,他引:6  
本文采用接触角和变角XPS方法对FA共聚物的表面能、 表面微相结构做了进一步的研究.  相似文献   

16.
The architecture effects on phases and surface enrichment behaviors of epoxy nanocomposites containing fluorinated block copolymers are investigated by the incorporation of two novel copolymers composed of poly (2, 2, 2‐trifluoroethyl methacrylate) (PTFEMA) and poly (ε‐caprolactone) (PCL), PCL‐b‐PTFEMA and PTFEMA‐b‐PCL‐b‐PTFEMA, with identical molecular weight and composition. These fluorinated copolymers in epoxy display distinguished self‐assembled structures, as evidenced by dynamic laser scattering and scanning electron microscopy measurements. Static contact angle detection suggests that the nanocomposites display an obvious improvement in surface water repellency and a reduction in surface free energy. The enhancement in surface hydrophobicity is attributed to the enrichment of PTFEMA blocks at the nanocomposite surface and to the formation of the specific surface morphology, as confirmed by atomic force microscopy. The different architectures of the two block copolymers give rise to differences in phase‐structures, and the ultimate surface performances of composites. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1037–1045  相似文献   

17.
We report a simple photolithographic approach for the creation and micropatterning of chemical functionality on polymer surfaces by use of surface-active block copolymers that contain protected photoactive functional groups. The block copolymers self-assemble at the substrate-air interface to generate a surface that is initially hydrophobic with low surface tension but that can be rendered hydrophilic and functional by photodeprotection with UV radiation. The block copolymer employed, poly(styrene-b-tert butyl acrylate), segregates preferentially to the surface of a polystyrene substrate because of the low surface tension of the polyacrylate blocks. The strong adsorption of block copolymers causes a bilayer structure to form presenting a photoactive polyacrylate layer at the surface. In the example described, the tert-butyl ester groups on the polyacrylate blocks are deprotected by exposure to UV radiation in the presence of added photoacid generators to form surface carboxylic acid groups. Surface micropatterns of carboxylic acid groups are generated by UV exposure through a contact mask. The success of surface chemical modification and pattern formation is demonstrated by X-ray photoelectron spectroscopy and contact angle measurements along with imaging by optical and fluorescence microscopy methods. The resultant chemically patterned surfaces are then used to template patterns of various biomolecules by means of selective adsorption, covalent bonding and molecular recognition mechanisms. The surface modification/patterning concept can be applied to virtually any polymeric substrate because protected functional groups have intrinsically low surface tensions, rendering properly designed block copolymers surface active in almost all polymeric substrates.  相似文献   

18.
Polyacrylate-fluorosilicone block copolymers, namely, polyacrylate-b-polydimethylsiloxane and polyacrylate-bpolymethyltrifluoropropylsiloxane were synthesized for fabricating icephobic coatings. The surface morphology and chemical composition of the block copolymers were characterized by atomic force microscopy and X-ray photoelectron spectroscopy, suggesting that the fluorosilicone blocks aggregated on the top of the copolymer surfaces. Results of water contact angles and ice shear strength demonstrated a certain amount adding of methacryloisobutyl polyhedral oligomeric silsesquioxane could lead to the decrease of contact angle hysteresis and increase of surface roughness, consequently resulting in significant reduction of the ice adhesion strength. Therefore, the block copolymers with the combined advantages of silicone and fluoropolymers could be potentially applied as icephobic coatings.  相似文献   

19.
We report the self-assembly of monolayers of spider silk-like block copolymers. Langmuir isotherms were obtained for a series of bioengineered variants of the spider silks, and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers onto silica substrates and were subsequently analyzed by atomic force microscopy (AFM). Static contact angle measurements were performed to characterize interactions across the interface (thin film, water, air), and molecular modeling was used to predict 3D conformation of spider silk-like block copolymers. The influence of molecular architecture and volume fraction of the proteins on the self-assembly process was assessed. At high surface pressure, spider silk-like block copolymers with minimal hydrophobic block (f(A) = 12%) formed oblate structures, whereas block copolymer with a 6-fold larger hydrophobic domain (f(A) = 46%) formed prolate structures. The varied morphologies obtained with increased hydrophobicity offer new options for biomaterials for coatings and related options. The design and use of bioengineered protein block copolymers assembled at air-water interfaces provides a promising approach to compare 2D microstructures and molecular architectures of these amphiphiles, leading to more rationale designs for a range of nanoengineered biomaterial needs as well as providing a basis of comparison to more traditional synthetic block copolymer systems.  相似文献   

20.
Poly(lactic acid) (PLA) and poly(lactic/glycolic acid) copolymers (PLGA) are biodegradable drug carriers of great importance, although successful pharmaceutical application requires adjustment of the surface properties of the polymeric drug delivery system to be compatible with the biological environment. For that reason, reduction of the original hydrophobicity of the PLA or PLGA surfaces was performed by applying a hydrophilic polymer poly(ethylene oxide) (PEO) with the aim to improve biocompatibility of the original polymer. PEO-containing surfaces were prepared by incorporation of block copolymeric surfactants, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic), into the hydrophobic surface. Films of polymer blends from PLA or PLGA (with lactic/glycolic acid ratios of 75/25 and 50/50) and from Pluronics (PE6800, PE6400, and PE6100) were obtained by the solvent casting method, applying the Pluronics at different concentrations between 1 and 9.1% w/w. Wettability was measured to monitor the change in surface hydrophobicity, while X-ray photoelectron spectroscopy (XPS) was applied to determine the composition and chemical structure of the polymer surface and its change with surface modification. Substantial reduction of surface hydrophobicity was achieved on both the PLA homopolymer and the PLGA copolymers by applying the Pluronics at various concentrations. In accordance with the wettability changes the accumulation of Pluronics in the surface layer was greatly affected by the initial hydrophobicity of the polymer, namely, by the lactide content of the copolymer. The extent of surface modification was also found to be dependent on the type of blended Pluronics. Surface activity of the modifying Pluronic component was interpreted by using the solubility parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号