首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Functionalization of polyolefins is an industrially important yet scientifically challenging research subject. This paper summarizes our recent effort to access structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization. In one approach, polypropylenes containing side chain functional groups of controlled concentrations were obtained by Ziegler-Natta-catalyzed copolymerization of propylene in combination with either living anionic or controlled radical polymerization of polar monomers. The copolymerization of propylene with 1,4-divinylbenzene using an isospecific MgCl2-supported TiCl4 catalyst yielded polypropylenes containing pendant styrene moieties. Both metalation reaction with n-butyllithium and hydrochlorination reaction with dry hydrogen chloride selectively and quantitatively occurred at the pendant reactive sites, generating polymeric benzyllithium and 1-chloroethylbenzene species. These species initiated living anionic polymerization of styrene (S) and atom transfer radical polymerization (in the presence of CuCl and pentamethyldiethylenetriamine) of methyl methacrylate (MMA), respectively, resulting in functional polypropylene graft copolymers (PP-g-PS and PP-g-PMMA) with controllable graft lengths. In another approach, chain end-functionalized polypropylenes containing a terminal OH-group with controlled molecular weights were directly prepared by propylene polymerization with a metallocene catalyst through a selective aluminum chain transfer reaction. Both approaches proved to be desirable polyolefin functionalization routes in terms of efficiency and polymer structure controllability.  相似文献   

2.
Propylene polymerizations were performed with homogeneous ?2C(Flu)(Cp)ZrCl2 and SiMe2(Ind)2ZrCl2 catalyst mixtures and with mixtures supported on the zeolite acid mordenite. The polymerizations were performed in toluene and hexane/triisobutylaluminum at different temperatures and Al(MAO)/Zr concentration ratios. The effects of these variables on the catalyst activity were investigated with statistical experimental planning. The average molecular weights, molecular weight distributions, melting temperatures, and crystallinities of the obtained polymers were examined. The results showed lower activities for the homogeneous catalyst mixture than for the isolated systems. On the other hand, high activities were obtained for the syndiospecific heterogeneous system, but very low values were obtained for the supported isospecific metallocene, although both catalysts were prepared under the same conditions. The supported binary system showed intermediary catalyst activity in comparison with the syndiospecific and isospecific supported catalysts. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 263–272, 2005  相似文献   

3.
The copolymerization of propylene with 1-butene and 1-pentene at 60°C in the propylene bulk in the presence of the homogeneous isospecific metallocene catalyst of the C2 symmetry rac-Me2Si(4-Ph-2-MeInd)2ZrCl2 activated by polymethylaluminoxane is studied. Copolymers containing up to 30 mol % 1-butene and up to 10 mol % 1-pentene are synthesized. For the copolymerization of the above monomers, reactivity ratios are estimated to be equal to unity, thereby indicating the azeotropic character of the process. It is found that the distribution of comonomer units in the copolymers is close to statistical. For both comonomers, the comonomer effect is observed: an increase in the rate of propylene polymerization after addition of a small amount of a less reactive comonomer. The addition of 1-butene and 1-pentene to polypropylene shows a weak effect on the stereoregularity of chains but causes a marked reduction in the molecular mass of the polymer and changes its thermophysical characteristics and mechanical properties. An X-ray diffraction study of the copolymers is performed.  相似文献   

4.
Polymerization reactions of ethylene, propylene, higher 1‐alkenes (1‐hexene, 1‐octene, 1‐decene, vinyl cyclohexane, 3‐methyl‐1‐butene), and copolymerization reactions of ethylene with 1‐octene with a post‐metallocene catalyst containing an oxyquinolinyl complex of Ti and a combination of Al(C2H5)2Cl and Mg(C4H9)2 as a cocatalyst were studied. The catalyst is highly active and, judging by the broad molecular weight distribution of the polymers, contains several active center populations. The active centers differ not only in their kinetic parameters but also in stereospecificity. Most of the active centers produce essentially atactic polypropylene but a small fraction of the centers produces polypropylene of moderate isotacticity degree. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1844–1854  相似文献   

5.
In this work, propylene was polymerized with isospecific and syndiospecific catalysts in homogeneous and heterogeneous systems. The binary metallocene system of both isospecific and syndiospecific catalysts in the heterogeneous system was also used. Besides the type of catalyst, parameters such as polymerization temperature and pressure were varied to achieve the better conditions for the polymerization. The objective of this work is to investigate the influence of these parameters on the characteristics of the produced polymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2979–2986, 2002  相似文献   

6.
This paper discusses the copolymerization reaction of propylene and p-methylstyrene (p-MS) via four of the best-known isospecific catalysts, including two homogeneous metallocene catalysts, namely, {SiMe2[2-Me-4-Ph(Ind)]2}ZrCl2 and Et(Ind)2ZrCl2, and two heterogeneous Ziegler–Natta catalysts, namely, MgCl2/TiCl4/electron donor (ED)/AlEt3 and TiCl3. AA/Et2AlCl. By comparing the experimental results, metallocene catalysts show no advantage over Ziegler–Natta catalysts. The combination of steric jamming during the consective insertion of 2,1-inserted p-MS and 1,2-inserted propylene (k21 reaction) and the lack of p-MS homopolymerization (k22 reaction) in the metallocene coordination mechanism drastically reduces catalyst activity and polymer molecular weight. On the other hand, the Ziegler–Natta heterogeneous catalyst proceeding with 1,2-specific insertion manner for both monomers shows no retardation because of the p-MS comonomer. Specifically, the supported MgCl2/TiCl4/ED/AlEt3 catalyst, which contains an internal ED, produces copolymers with high molecular weight, high melting point, and no p-MS homopolymer. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2795–2802, 1999  相似文献   

7.
Studies devoted to the homo-and copolymerization of propylene with ethylene and higher olefins (1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene) in liquid propylene under the action of homogeneous metallocene catalysts of various types are surveyed in brief. The main kinetic features of the processes and the properties of the polymers are discussed. The optimal conditions for the highly efficient syntheses of isotactic, syndiotactic, hemiisotactic, and stereoblock PPs are described. It is shown that the combined cocatalyst—polymethylaluminoxane coupled with (i-Bu)3Al—shows promise for the processes under consideration. Depending on the type of catalyst used, the copolymerization of propylene with ethylene yields copolymers with a block, random, or close to alternating distribution of comonomer units in a polymer chain. The copolymerization of propylene with higher olefins in the monomer bulk initiated by highly active sterically hindered isospecific catalytic systems shows an ideal character, and the reactivity ratios are r 1r 2 ≈ 1; that is, the composition of the copolymer is equal to the composition of the monomer mixture at all comonomer ratios. It is demonstrated that the synthesis of homo-and copolymers of propylene in the monomer bulk in the presence of modern homogeneous catalysts is promising for highly efficient production of both traditional and new polymer materials with a unique combination of mechanical and thermal properties.  相似文献   

8.
This article discusses a facile and inexpensive reaction process for preparing polypropylene‐based graft copolymers containing an isotactic polypropylene (i‐PP) main chain and several functional polymer side chains. The chemistry involves an i‐PP polymer precursor containing several pendant vinylbenzene groups, which is prepared through the Ziegler–Natta copolymerization of propylene and 1,4‐divinylbenzene mediated by an isospecific MgCl2‐supported TiCl4 catalyst. The selective monoenchainment of 1,4‐divinylbenzene comonomers results in pendant vinylbenzene groups quantitatively transformed into benzyl halides by hydrochlorination. In the presence of CuCl/pentamethyldiethylenetriamine, the in situ formed, multifunctional, polymeric atom transfer radical polymerization initiators carry out graft‐from polymerization through controlled radical polymerization. Some i‐PP‐based graft copolymers, including poly(propylene‐g‐methyl methacrylate) and poly(propylene‐g‐styrene), have been prepared with controlled compositions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 429–437, 2005  相似文献   

9.
The surface properties of polypropylene and propylene and hexene-1 copolymers synthesized on the rac-Me2SiInd2ZrCl2-polymethylalumoxane isocpecific metallocene system and the Ph2C(Cp)(Flu)ZrCl2-polymethylalumoxane syndiospecific system were studied. It was found that syndiotactic polypropylene films were less hydrophobic than isotactic polypropylene films, whereas the films of propylene and hexene-1 copolymers were less hydrophobic than the films of corresponding homopolymers. The hydrophobicity of samples decreased with the hexene-1 content of the copolymer. Treatment in a dc discharge resulted in noticeable surface hydrophilization in all of the test polymer samples. There is a correlation between the surface parameters and the density of surface charge induced in the polymers by dc discharge treatment.  相似文献   

10.
The copolymerization of propylene and 3‐buten‐1‐ol protected with alkylaluminum [trimethylaluminum (TMA) or triisobutylaluminum] was conducted with an isospecific zirconocene catalyst [rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride], combined with methylaluminoxane as a cocatalyst, in the presence of additional TMA or H2 as the chain‐transfer reagent if necessary. The results indicated that end‐hydroxylated polypropylene was obtained in the presence of the chain‐transfer reagents because of the formation of dormant species after the insertion of the 3‐buten‐1‐ol‐based monomer followed by chain‐transfer reactions. The selectivity of the chain‐transfer reactions was influenced by the alkylaluminum protecting the comonomer and the catalyst structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5600–5607, 2004  相似文献   

11.
Bis‐styrenic molecules, 1,4‐divinylbenzene (DVB) and 1,2‐bis(4‐vinylphenyl)ethane (BVPE), were successfully combined with hydrogen (H2) to form consecutive chain transfer complexes in propylene polymerization mediated by an isospecific metallocene catalyst (i.e., rac‐dimethylsilylbis(2‐methyl‐4‐phenylindenyl)zirconium dichloride, I ) activated with methylaluminoxane (MAO), rendering a catalytic access to styryl‐capped isotactic polypropylenes (i‐PP). The chain transfer reaction took place in a unique way where prior to the ultimate chain transfer DVB/H2 or BVPE/H2 caused a copolymerization‐like reaction leading to the formation of main chain benzene rings. A preemptive polymer chain reinsertion was deduced after the consecutive actions of DVB/H2 or BVPE/H2, which gave the styryl‐terminated polymer chain alongside a metal‐hydride active species. It was confirmed that the chain reinsertion occurred in a regio‐irregular 1,2‐fashion, which contrasted with a normal 2,1‐insertion of styrene monomer and ensured subsequent continuous propylene insertions, directing the polymerization to repeated DVB or BVPE incorporations inside polymer chain. Only as a competitive reaction, the insertion of propylene into metal‐hydride site broke the chain propagation resumption process while completed the chain transfer process by releasing the styryl‐terminated polymer chain. BVPE was found with much higher chain transfer efficiency than DVB, which was attributed to its non‐conjugated structure with much divided styrene moieties resulting in higher polymerization reactivity but lower chain reinsertion tendency. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3709–3713, 2010  相似文献   

12.
For two stereospecific metallocene catalysts, namely, syndiospecific Ph2CCpFluHfMe2 and isospecific rac-Me2SiInd2ZrMe2, the introduction of Lewis bases into a reaction medium was shown to promote a marked rise in the efficiency of catalytic systems. In the case of the syndiospecific metallocene, the maximum effect of the base (a 10-fold increase in activity) was achieved using the (Ph2CCpFluHfMe2 + Ph3N)/CPh3B(C6F5)4 catalytic system in the presence of Al-i-Bu3 at a molar ratio of Al: Hf: B: N = 15: 1: 1: 1. When the polymerization of propylene was carried out in the presence of Al-i-Bu3 and Ph3N, an elastomeric stereoblock syndio/atactic polypropylene was produced. For the (rac-Me2SiInd2ZrMe2 + amine)/CPh3B(C6F5)4 catalytic system, a 15-to 30-fold increase in activity was observed upon introduction of amines of the aniline type: Me2NPh, Me-n-BuNPh, and NPh3.  相似文献   

13.
The effect of chemical structure of 2,2′-disubstituted 1,3-dimethoxypropane (so-called 1,3-diether) on the performance of Ziegler-Natta (ZN) catalyst was investigated by using density functional theory and molecular mechanics. Calculation of the energy barrier during insertion of propylene reveals that the isospecific active site created on the (1 0 0) surface of MgCl2 is more active than the aspecific active site created on the (1 1 0) surface of MgCl2 for propylene polymerization. When the adsorption energies of various 1,3-diethers are calculated and analyzed in terms of isotacticity, it is found that the isotacticity of polypropylene increases as 1,3-diether is adsorbed more preferentially on the (1 1 0) surface. Since analysis of energetics for insertion of propylene into the active site created on the (1 1 0) surface with 1,3-diether coordinated to Mg atom in the vicinity of the active site reveals that the coordination of 1,3-diether does not transform the aspecific active site on the (1 1 0) surface into isospecific one, it is concluded that the primary function of 1,3-diether is to prevent the formation of aspecific site on the (1 1 0) surface, without significant decrease in the number of the isospecific active site created on the (1 0 0) surface. A systematic analysis of various model compounds for 1,3-diether suggests that the substitution of highly branched hydrocarbon at the C2 position of 1,3-diether results in better performance of ZN catalyst.  相似文献   

14.
Isotactic polypropylene-based graft copolymers linking poly(methyl methacrylate), poly(n-butyl acrylate) and polystyrene were successfully synthesized by a controlled radical polymerization with isotactic polypropylene (iPP) macroinitiator. The hydroxylated iPP, prepared by propylene/10-undecen-1-ol copolymerization with a metallocene/methyl-aluminoxane/triisobutylaluminum catalyst system, was treated with 2-bromoisobutyryl bromide to produce a Br-group containing iPP (PP-g-Br). The resulting PP-g-Br could initiate controlled radical polymerization of methyl methacrylate, n-butyl acrylate and styrene by using a copper catalyst system, leading to a variety of iPP-based graft copolymers with a different content of the corresponding polar segment. These graft copolymers demonstrated unique mechanical properties dependent upon the kind and content of the grafted polar segment.  相似文献   

15.
Poly(propylene‐ran‐1,3‐butadiene) was synthesized using isospecific zirconocene catalysts and converted to telechelic isotactic polypropylene by metathesis degradation with ethylene. The copolymers obtained with isospecific C2‐symmetric zirconocene catalysts activated with modified methylaluminoxane (MMAO) had 1,4‐inserted butadiene units ( 1,4‐BD ) and 1,2‐inserted units ( 1,2‐BD ) in the isotactic polypropylene chain. The selectivity of butadiene towards 1,4‐BD incorporation was high up to 95% using rac‐dimethylsilylbis(1‐indenyl)zirconium dichloride (Cat‐A)/MMAO. The molar ratio of propylene to butadiene in the feed regulated the number‐average molecular weight (Mn) and the butadiene contents of the polymer produced. Metathesis degradations of the copolymer with ethylene were conducted with a WCI6/SnMe4/propyl acetate catalyst system. The 1H NMR spectra before and after the degradation indicated that the polymers degraded by ethylene had vinyl groups at both chain ends in high selectivity. The analysis of the chain scission products clarified the chain end structures of the poly(propylene‐ran‐1,3‐butadiene). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5731–5740, 2007  相似文献   

16.
The polymerization of ethylene and propylene and the copolymerization of ethylene and hexene-1 with a Ti(O-iso-Pr)4–AlR2Cl/MgBu2 catalyst system have been studied. The advantages of this system over metallocene and postmetallocene catalysts are high activity, low cost, and ease of synthesis. The resulting polymers and copolymers are characterized by a broad molecular-mass distribution, which reflects the heterogeneity of the active sites with respect to kinetic parameters. As a consequence, the ethylene/hexene-1 copolymers exhibit compositional heterogeneity. The active sites of the system produce copolymers with a pronounced tendency toward alternation of monomer units. The propylene polymerization product is mostly amorphous atactic polypropylene.  相似文献   

17.
The copolymerization of styrene (St) with a styrene‐terminated polyisoprene macromonomer (SIPM) by a nickel(II) acetylacetonate [Ni(acac)2] catalyst in combination with methylaluminoxane (MAO) was investigated. A SIPM with a high terminal degree of functionalization and a narrow molecular weight distribution was used for the copolymerization of St. The copolymerization proceeded easily to give a high molecular weight graft copolymer. After fractionation of the resulting copolymer with methyl ethyl ketone, the insoluble part had highly isotactic polystyrene in the main chain and polyisoprene in the side chain. Lowering the MAO/Ni molar ratio and the polymerization temperature were favorable to producing isospecific active sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1241–1246, 2000  相似文献   

18.
Syndiotactic polystyrene (SPS) is a new crystalline engineering thermoplastic. With a melting point of 270 °C and its crystalline nature, SPS has high heat resistance, excellent chemical resistance and water/steam resistance. Since SPS has excellent dielectric properties, it is useful as a capacitor insulation material. The rate of crystallization is very fast in comparison with isotactic polystyrene (IPS), thus, SPS can be used in a number of forming operations, including injection molding, extrusion and thermoforming. A system composed of a homogeneous titanium compound and methylaluminoxane (MAO) is an effective catalyst for syndiospecific polymerization of styrene. On the other hand heterogeneous titanium compounds containing halogen make a mixture of isotactic and syndiotactic components. The amount of syndiotactic polystyrene obtained is dependent on the mole ratio of Al to Ti. The result of ESR measurement suggests the Ti3+ species are important as a highly active site for producing syndiotactic polystyrene. A comparison of the stereoregularities of polypropylene and polystyrene formed by various metallocene catalysts is studied. The (C6H6)2C(η5-C5H4)(η5-C9H6)TiCl2/MAO system gives a homogeneous catalyst for the polymerization of propylene giving isotactic rich polypropylene and of styrene to give syndiotactic polystyrene.  相似文献   

19.
Ethene/1‐olefin blocky copolymers were obtained through nonliving insertion copolymerizations promoted by an isospecific single site catalyst. Propene or 4‐methyl‐1‐pentene were copolymerized with ethene with metallocenes endowed with different stereospecificity in propene polymerization: (i) aspecific “constrained geometry” half‐sandwich complex, {η15‐([tert‐butyl‐amido)dimethylsilyl](2,3,4,5‐tetramethyl‐1‐cyclopentadienyl)}titanium dichloride [Me2Si(Me4Cp)(NtBu)TiCl2] ( CG ), (ii) moderately isospecific rac‐ethylenebis(indenyl)zirconium dichloride [rac‐(EBI)ZrCl2] ( EBI ), (iii) slightly more isospecific hydrogenated homologue, rac‐ethylenebis(tetrahydroindenyl)zirconium dichloride [rac‐(EBTHI)ZrCl2] ( EBTHI ), (iv) highly iso‐specific rac‐[methylenebis(3‐tert‐butyl‐1‐indenyl)]zirconium dichloride [rac‐H2C‐(3‐tBuInd)2ZrCl2] ( TBI ), (v) most isospecific rac‐[isopropylidene‐bis(3‐tert‐butyl‐cyclopentadienyl)]zirconium dichloride [rac‐Me2C‐(3‐tBuCp)2ZrCl2] ( TBC ). Copolymerizations were described by a 2nd order Markovian copolymerization model and data are proposed to correlate the formation of 1‐olefin sequences with catalytic site isospecificity, made by the cooperation of organometallic complex and growing chain. Blocky copolymers were prepared over wide ranges of compositions: with any of the isospecific metallocenes when 4‐methyl‐1‐pentene was the 1‐olefin and only with the highly isospecific ones ( TBI , TBC ) when propene was the comonomer. A penultimate unit effect was observed with TBI as the metallocene, whereas a 1st order Markov model described the ethene/propene copolymerization from TBC . A moderately isospecific metallocene, such as EBI , is shown to be able to prepare blocky ethene copolymers with 4‐methyl‐1‐pentene. These results pave the way for the synthesis of new ethene based materials. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2063–2075, 2010  相似文献   

20.
This article discusses a chemical route to prepare new ethylene/propylene copolymers (EP) containing a terminal reactive group, such as ?‐CH3 and OH. The chemistry involves metallocene‐mediated ethylene/propylene copolymerization in the presence of a consecutive chain transfer agent—a mixture of hydrogen and styrene derivatives carrying a CH3 (p‐MS) or a silane‐protected OH (St‐OSi). The major challenge is to find suitable reaction conditions that can simultaneously carry out effective ethylene/propylene copolymerization and incorporation of the styrenic molecule (St‐f) at the polymer chain end, in other words, altering the St‐f incorporation mode from copolymerization to chain transfer. A systematic study was conducted to examine several metallocene catalyst systems and reaction conditions. Both [(C5Me4)SiMe2N(t‐Bu)]TiCl2 and rac‐Et(Ind)2ZrCl2, under certain H2 pressures, were found to be suitable catalyst systems to perform the combined task. A broad range of St‐f terminated EP copolymers (EP‐t‐p‐MS and EP‐t‐St‐OH), with various compositions and molecular weights, have been prepared with polymer molecular weight inversely proportional to the molar ratio of [St‐f]/[monomer]. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1858–1872, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号