首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The graph isomorphism problem—to devise a good algorithm for determining if two graphs are isomorphic—is of considerable practical importance, and is also of theoretical interest due to its relationship to the concept of NP-completeness. No efficient (i.e., polynomial-bound) algorithm for graph isomorphism is known, and it has been conjectured that no such algorithm can exist. Many papers on the subject have appeared, but progress has been slight; in fact, the intractable nature of the problem and the way that many graph theorists have been led to devote much time to it, recall those aspects of the four-color conjecture which prompted Harary to rechristen it the “four-color disease.” This paper surveys the present state of the art of isomorphism testing, discusses its relationship to NP-completeness, and indicates some of the difficulties inherent in this particularly elusive and challenging problem. A comprehensive bibliography of papers relating to the graph isomorphism problem is given.  相似文献   

2.
This work deals with the problem of isomorphism of simple graphs without selfloops and gives a proposal for a canonical representation of graphs and an efficient deterministic procedure to find this representation. The article is disposed as follows: Section 1 defines the topological and computational language used and presents the isomorphism problem. The main results of the research are given in section 2, followed by the ALGOL-version of the algorithm and an analysis of its efficiency in section 3.  相似文献   

3.
The article is a creative compilation of certain papers devoted to the graph isomorphism problem, which have appeared in recent years. An approach to the isomorphism problem is proposed in the first chapter, combining, mainly, the works of Babai and Luks. This approach, being to the survey's authors the most promising and fruitful of results, has two characteristic features: the use of information on the special structure of the automorphism group and the profound application of the theory of permutation groups. In particular, proofs are given of the recognizability of the isomorphism of graphs with bounded valences in polynomial time and of all graphs in moderately exponential time. In the second chapter a free exposition is given of the Filotti-Mayer-Miller results on the isomorphism of graphs of bounded genus. New and more complete proofs of the main assertions are presented, as well as an algorithm for the testing of the isomorphism of graphs of genus g in time O(vO(g)), where v is the number of vertices. In the third chapter certain extended means of the construction of algorithms testing an isomorphism are discussed together with probabilistically estimated algorithms and the Las Vegas algorithms. In the fourth chapter the connections of the graph isomorphism problem with other problems are examined.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 118, pp. 83–158, 1982.  相似文献   

4.
A widely used method for determining the similarity of two labeled trees is to compute a maximum agreement subtree of the two trees. Previous work on this similarity measure has only been concerned with the comparison of labeled trees of two special kinds, namely, uniformly labeled trees (i.e., trees with all their nodes labeled with the same symbol) and evolutionary trees (i.e., leaf-labeled trees with distinct symbols for distinct leaves). This paper presents an algorithm for comparing trees that are labeled in an arbitrary manner. In addition to this generality, this algorithm is faster than the previous algorithms.Another contribution of this paper is on maximum weight bipartite matchings. We show how to speed up the best known matching algorithms when the input graphs are node-unbalanced or weight-unbalanced. Based on these enhancements, we obtain an efficient algorithm for a new matching problem called the hierarchical bipartite matching problem, which is at the core of our maximum agreement subtree algorithm.  相似文献   

5.
The dominating induced matching problem, also known as efficient edge domination, is the problem of determining whether a graph has an induced matching that dominates every edge of the graph. This problem is known to be NP-complete. We study the computational complexity of the problem in special graph classes. In the present paper, we identify a critical class for this problem (i.e., a class lying on a “boundary” separating difficult instances of the problem from polynomially solvable ones) and derive a number of polynomial-time results. In particular, we develop polynomial-time algorithms to solve the problem for claw-free graphs and convex graphs.  相似文献   

6.
We discuss methods for the generation of oriented matroids and of isomorphism classes of oriented matroids. Our methods are based on single element extensions and graph theoretical representations of oriented matroids, and all these methods work in general rank and for non-uniform and uniform oriented matroids as well. We consider two types of graphs, cocircuit graphs and tope graphs, and discuss the single element extensions in terms of localizations which can be viewed as partitions of the vertex sets of the graphs. Whereas localizations of the cocircuit graph are well characterized, there is no graph theoretical characterization known for localizations of the tope graph. In this paper we prove a connectedness property for tope graph localizations and use this for the design of algorithms for the generation of single element extensions by use of tope graphs. Furthermore, we discuss similar algorithms which use the cocircuit graph. The characterization of localizations of cocircuit graphs finally leads to a backtracking algorithm which is a simple and efficient method for the generation of single element extensions. We compare this method with a recent algorithm of Bokowski and Guedes de Oliveira for uniform oriented matroids. Received November 1, 2000, and in revised form May 11, 2001. Online publication November 7, 2001.  相似文献   

7.
We present a polynomial-time algorithm for producing a feasible real-valued circulation in undirected graphs with upper and lower bounds, based on Seymour's characterization. For directed graphs, an efficient algorithm follows from a classical result by Hoffman. We show that, for mixed graphs, i.e., graphs having both directed and undirected edges, the problem is NP-complete.  相似文献   

8.
We consider the class of I‐graphs I(n,j,k), which is a generalization over the class of the generalized Petersen graphs. We study different properties of I‐graphs, such as connectedness, girth, and whether they are bipartite or vertex‐transitive. We give an efficient test for isomorphism of I‐graphs and characterize the automorphism groups of I‐graphs. Regular bipartite graphs with girth at least 6 can be considered as Levi graphs of some symmetric combinatorial configurations. We consider configurations that arise from bipartite I‐graphs. Some of them can be realized in the plane as cyclic astral configurations, i.e., as geometric configurations with maximal isometric symmetry. © 2005 Wiley Periodicals, Inc.  相似文献   

9.
10.
This paper deals with the isomorphism problem of directed path graphs and rooted directed path graphs. Both graph classes belong to the class of chordal graphs, and for both classes the relative complexity of the isomorphism problem is yet unknown. We prove that deciding isomorphism of directed path graphs is isomorphism complete, whereas for rooted directed path graphs we present a polynomial-time isomorphism algorithm.  相似文献   

11.
A canonical basis of Rn associated with a graph G on n vertices has been defined in [15] in connection with eigenspaces and star partitions of G. The canonical star basis together with eigenvalues of G determines G to an isomorphism. We study algorithms for finding the canonical basis and some of its variations. The emphasis is on the following three special cases; graphs with distinct eigenvalues, graphs with bounded eigenvalue multiplicities and strongly regular graphs. We show that the procedure is reduced in some parts to special cases of some well known combinatorial optimization problems, such as the maximal matching problem. the minimal cut problem, the maximal clique problem etc. This technique provides another proof of a result of L. Babai et al. [2] that isomorphism testing for graphs with bounded eigenvalue multiplicities can be performend in a polynomial time. We show that the canonical basis in strongly regular graphs is related to the graph decomposition into two strongly regular induced subgraphs. Examples of distinguishing between cospectral strongly regular graphs by means of the canonical basis are provided. The behaviour of star partitions of regular graphs under operations of complementation and switching is studied.  相似文献   

12.
The object of this paper is the classification of those algebraic (i.e. not necessarily continuous) endomorphisms of a locally compact abelian group leaving invariant all closed subgroups. In a canonical way they turn out to form again a locally compact abelian group which can be determined up to isomorphism. If the group is totally disconnected or not periodic all endomorphisms with this property are continuous and form a topological ring.  相似文献   

13.
This is a summary of the author’s Ph.D. thesis supervised by Sara Nicoloso and Gianpaolo Oriolo and defended on 3 April 2008 at Sapienza Università di Roma. The thesis is written in English and is available from the author upon request. This work deals with three classical combinatorial problems, namely the isomorphism, the vertex-coloring and the stable set problem, restricted to two graph classes, namely circulant and claw-free graphs. In the first part (joint work with Sara Nicoloso), we derive a necessary and sufficient condition to test isomorphism of circulant graphs, and give simple algorithms to solve the vertex-coloring problem on this class of graphs. In the second part (joint work with Gianpaolo Oriolo and Gautier Stauffer), we propose a new combinatorial algorithm for the maximum weighted stable set problem in claw-free graphs, and devise a robust algorithm for the same problem in the subclass of fuzzy circular interval graphs, which also provides recognition when the stability number is greater than three.  相似文献   

14.
We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where canonical means that isomorphic graphs receive identical models. This implies that the recognition and the isomorphism problems for these graphs are solvable in logspace. For the broader class of concave-round graphs, which still possess (not necessarily proper) circular-arc models, we show that a canonical circular-arc model can also be constructed in logspace. As a building block for these results, we design a logspace algorithm for computing canonical circular-arc models of circular-arc hypergraphs. This class of hypergraphs corresponds to matrices with the circular ones property, which play an important role in computational genomics. Our results imply that there is a logspace algorithm that decides whether a given matrix has this property.Furthermore, we consider the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We show that this problem is solvable in logarithmic space for the classes of proper circular-arc, concave-round, and co-convex graphs.Note that solving a problem in logspace implies that it is solvable by a parallel algorithm of the class AC1. For the problems under consideration, at most AC2 algorithms were known earlier.  相似文献   

15.
Nanocones are carbon networks that can be modeled as infinite cubic plane graphs with 1≤p≤5 pentagons and all the other faces hexagons. In this paper, we give a short proof of the fact that nanocones fall into eight classes when classified according to isomorphism up to a finite region, and describe a finer classification taking the localization of the pentagons into account. For this finer classification, we also describe an efficient algorithm to enumerate all non-equivalent nanocone representatives for a given parameter set, and give results of an implementation of the algorithm.  相似文献   

16.
A biclique cutset is a cutset that induces the disjoint union of two cliques. A hole is an induced cycle with at least five vertices. A graph is biclique separable if it has no holes and each induced subgraph that is not a clique contains a clique cutset or a biclique cutset. The class of biclique separable graphs contains several well‐studied graph classes, including triangulated graphs. We prove that for the class of biclique separable graphs, the recognition problem, the vertex coloring problem, and the clique problem can be solved efficiently. Our algorithms also yield a proof that biclique separable graphs are perfect. Our coloring algorithm is actually more general and can be applied to graphs that can be decomposed via a special type of biclique cutset. Our algorithms are based on structural results on biclique separable graphs developed in this paper. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 277–298, 2005  相似文献   

17.
In this paper we construct a polynomial algorithm for verifying the isomorphism of graphs which do not pinch to K3,g. In the construction we use properties of colored graphs from this class and results of Babai-Luks on canonization of graphs. The class cited contains the class of graphs of genus not exceeding g, and we apply the algorithm constructed to the recognition of isomorphism of graphs of bounded valence. The method given is a generalization of the combinatorial and group-theoretic approach to the isomorphism problem.Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 137, pp. 99–114, 1984.  相似文献   

18.
We present efficient (parallel) algorithms for two hierarchical clustering heuristics. We point out that these heuristics can also be applied to solving some algorithmic problems in graphs, including split decomposition. We show that efficient parallel split decomposition induces an efficient parallel parity graph recognition algorithm. This is a consequence of the result of S. Cicerone and D. Di Stefano [[7]] that parity graphs are exactly those graphs that can be split decomposed into cliques and bipartite graphs.  相似文献   

19.
20.
Finding good cycles in graphs is a problem of great interest in graph theory as well as in locational analysis. We show that the center and median problems are NP-hard in general graphs. This result holds both for the variable cardinality case (i.e., all cycles of the graph are considered) and the fixed cardinality case (i.e., only cycles with a given cardinality p are feasible). Hence it is of interest to investigate special cases where the problem is solvable in polynomial time. In grid graphs, the variable cardinality case is, for instance, trivially solvable if the shape of the cycle can be chosen freely. If the shape is fixed to be a rectangle one can analyze rectangles in grid graphs with, in sequence, fixed dimension, fixed cardinality, and variable cardinality. In all cases a complete characterization of the optimal cycles and closed form expressions of the optimal objective values are given, yielding polynomial time algorithms for all cases of center rectangle problems. Finally, it is shown that center cycles can be chosen as rectangles for bounded cardinalities such that the center cycle problem in grid graphs is in these cases completely solved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号