首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanofluids, because of their enhanced heat transfer capability as compared to normal water/glycol/oil based fluids, offer the engineer opportunities for development in areas where high heat transfer, low temperature tolerance and small component size are required. In this present paper, the hydrodynamic and thermal fields of a water–γAl2O3 nanofluid in a radial laminar flow cooling system are considered. Results indicate that considerable heat transfer enhancement is possible, even achieving a twofold increase in the case of a 10% nanoparticle volume fraction nanofluid. On the other hand, an increase in wall shear stress is also noticed with an increase in particle volume concentration.  相似文献   

2.
Laminar convective heat transfer enhancement of cuprous oxide (Cu2O)/water nanofluid flowing through a circular tube was investigated experimentally in the present work. A continuous closed loop was designed to measure heat transfer coefficients and pressure drop associated with the flow of Cu2O/water nanofluid over a wide range of laminar flow conditions. Comparison of the nanofluid experimental results with those of pure water have shown significant enhancement for heat transfer coefficients. On average, a 10% increase in heat transfer coefficient was observed with 16% penalty in pressure drop.  相似文献   

3.
郭亚丽  徐鹤函  沈胜强  魏兰 《物理学报》2013,62(14):144704-144704
利用格 子 Boltzmann方法模拟矩形腔内纳米流体Rayleigh-Benard对流, 得到温度场和流线分布, 比较分析不同Ra数、体积分数、粒径下纳米流体对流换热的变化情况. 结果表明: 在相同的Ra 数和体积分数下, 纳米流体的对流换热随着粒径的增大而减弱; 在相同的Ra数和粒径下, 纳米流体的对流换热随着体积分数增大而增强. 关键词: 纳米流体 Raleigh-Benard 多相流 格子Boltzmann方法  相似文献   

4.
小通道扁管内纳米流体流动与传热特性   总被引:2,自引:0,他引:2  
建立了测量小通道扁管内纳米流体流动与对流换热性能的实验系统,测量了不同粒子体积份额的水-Cu纳米 流体的管内对流换热系数和摩擦阻力系数,实验结果表明,在相同雷诺数条件下,小通道扁管内纳米流体的对流换热系数 大于纯液体,且随粒子的体积份额的增加而增大,而纳米流体的阻力系数并未明显增大。  相似文献   

5.
In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.  相似文献   

6.
A mathematical model to predict large enhancement of thermal conductivity of nanofluids by considering the Brownian motion is proposed. The effect of the Brownian motion on the flow and heat transfer characteristics is examined. The computations were done for various types of nanoparticles such as CuO, Al2O3, and ZnO dispersed in a base fluid (water), volume fraction of nanoparticles ? in the range of 1 % to 6 % at a fixed Reynolds number Re = 450 and nanoparticle diameter dnp = 30 nm. Our results demonstrate that Brownian motion could be an important factor that enhances the thermal conductivity of nanofluids. Nanofluid of Al2O3 is observed to have the highest Nusselt number Nu among other nanofluids types, while nanofluid of ZnO nanoparticles has the lowest Nu. Effects of the square cylinder on heat transfer characteristics are significant with considering Brownian motion. Enhancement in the maximum value of Nu of 29 % and 26 % are obtained at the lower and the upper walls of the channel, respectively, by considering the Brownian effects, with square cylinder, compared with that in the case without considering the Brownian motion. On the other hand, results show a marked improvement in heat transfer compared to the base fluid, this improvement is more pronounced on the upper wall for higher ?.  相似文献   

7.
In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.  相似文献   

8.
In this article, thermal and hydrodynamic performances of a miniature tangential heat sink are investigated experimentally by using Al2O3–H2O and TiO2–H2O nanofluids. The effects of flow rate and volume concentration on the thermal performance have been investigated for the Reynolds number range of 210 to 1,100. Experimental results show that the average convective heat transfer coefficient increases 14 and 11% and the bottom temperature of the heat sink decreases 2.2°C and 1.6°C by using Al2O3–H2O and TiO2–H2O nanofluid instead of pure distilled water, respectively.  相似文献   

9.
The present study investigated fluid flow and natural convection heat transfer in an enclosure embedded with isothermal cylinder. The purpose was to simulate the three-dimensional natural convection by thermal lattice Boltzmann method based on the D3Q19 model. The effects of suspended nanoparticles on the fluid flow and heat transfer analysis have been investigated for different parameters such as particle volume fraction, particle diameters, and geometry aspect ratio. It is seen that flow behaviors and the average rate of heat transfer in terms of the Nusselt number (Nu) are effectively changed with different controlling parameters such as particle volume fraction (5 % ≤ φ ≤ 10 %), particle diameter (d p = 10 nm to 30 nm) and aspect ratio (0.5 ≤ AR ≤ 2) with fixed Rayleigh number, Ra = 105. The present results give a good approximation for choosing an effective parameter to design a thermal system.  相似文献   

10.
《Physics letters. A》2020,384(20):126500
Nanofluids, composed of nanoparticles in base liquids, have drawn increasing attention in heat transfer applications due to their anomalously increased thermal conductivity. Pertinent parameters, including the base liquid thermal conductivity, particle thermal conductivity, particle size, particle volume fraction, and temperature, have been shown to have significant but complex effects on thermal performance of nanofluids, which is commonly characterized by the thermal conductivity enhancement, E%. In this work, machine learning is used to develop the Gaussian process regression model to find statistical correlations between E% and aforementioned physical parameters among various types of nanofluids. Nearly 300 nanofluid samples, dispersions of metal and ceramic nanoparticles in water, ethylene glycol, and transformer oil, are explored for this purpose. The modeling approach demonstrates a high degree of accuracy and stability, contributing to efficient and low-cost estimations of E%.  相似文献   

11.
Thermal properties of polymeric nanosolids, obtained by condensing the corresponding nanofluids, are investigated using photothermal techniques. The heat transport properties of two sets of polyvinyl alcohol (PVA) based nanosolids, TiO2/PVA and Cu/PVA, prepared by condensing the respective nanofluids, which are prepared by dispersing nanoparticles of TiO2 and metallic copper in liquid PVA, are reported. Two photothermal techniques, the photoacoustic and the photopyroelectric techniques, have been employed for measuring thermal diffusivity, thermal conductivity and specific heat capacity of these nanosolids. The experimental results indicate that thermal conduction in these polymer composites is controlled by heat diffusion through the embedded particles and interfacial scattering at matrix–particle boundaries. These two mechanisms are combined to arrive at an expression for their effective thermal conductivity. Analysis of the results reveals the possibility to tune the thermal conductivity of such nanosolids over a wide range using the right types of nanoparticles and right concentration.  相似文献   

12.
Abstract

Fluids in which nanometer-sized solid particles are suspended are called nanofluids. These fluids can be employed to increase the heat transfer rate in various applications. In this study, the convective heat transfer for Cu/water nanofluid through a circular tube was experimentally investigated. The flow was laminar, and constant wall temperature was used as thermal boundary condition. The Nusselt number of nanofluids for different nanoparticle concentrations, as well as various Peclet numbers, was obtained. Also, the rheological properties of the nanofluid for different volume fractions of nanoparticles were measured and compared with theoretical models. The results show that the heat transfer coefficient is enhanced by increasing the nanoparticle concentrations as well as the Peclet number.  相似文献   

13.
齐聪  何光艳  李意民  何玉荣 《物理学报》2015,64(2):24703-024703
纳米流体作为一种较高的导热介质, 广泛应用于各个传热领域. 鉴于纳米颗粒导热系数和成本之间的矛盾, 本文提出了一种混合纳米流体. 为了研究混合纳米流体颗粒间相互作用机理和自然对流换热特性, 在考虑颗粒间相互作用力的基础上, 利用多尺度技术推导了纳米流体流场和温度场的格子Boltzmann方程, 通过耦合流动和温度场的演化方程, 建立了Cu/Al2O3水混合纳米流体的格子Boltzmann模型, 研究了混合纳米流体颗粒间的相互作用机理和纳米颗粒在腔体内的分布. 发现在颗粒间相互作用力中, 布朗力远远大于其他作用力, 温差驱动力和布朗力对纳米颗粒的分布影响最大. 分析了纳米颗粒组分、瑞利数对自然对流换热的影响, 对比了混合纳米流体(Cu/Al2O3-水)与单一金属颗粒纳米流体(Al2O3-水)的自然对流换热特性, 发现混合纳米流体具有更强的换热特性.  相似文献   

14.
A new thermal conductivity model for nanofluids   总被引:8,自引:0,他引:8  
In a quiescent suspension, nanoparticles move randomly and thereby carry relatively large volumes of surrounding liquid with them. This micro-scale interaction may occur between hot and cold regions, resulting in a lower local temperature gradient for a given heat flux compared with the pure liquid case. Thus, as a result of Brownian motion, the effective thermal conductivity, keff, which is composed of the particles conventional static part and the Brownian motion part, increases to result in a lower temperature gradient for a given heat flux. To capture these transport phenomena, a new thermal conductivity model for nanofluids has been developed, which takes the effects of particle size, particle volume fraction and temperature dependence as well as properties of base liquid and particle phase into consideration by considering surrounding liquid traveling with randomly moving nanoparticles.The strong dependence of the effective thermal conductivity on temperature and material properties of both particle and carrier fluid was attributed to the long impact range of the interparticle potential, which influences the particle motion. In the new model, the impact of Brownian motion is more effective at higher temperatures, as also observed experimentally. Specifically, the new model was tested with simple thermal conduction cases, and demonstrated that for a given heat flux, the temperature gradient changes significantly due to a variable thermal conductivity which mainly depends on particle volume fraction, particle size, particle material and temperature. To improve the accuracy and versatility of the keffmodel, more experimental data sets are needed.  相似文献   

15.
Nanofluids present a new type of dispersed fluids consisting of a carrier fluid and solid nanoparticles. Unusual properties of nanofluids, particularly high thermal conductivity, make them eminently suitable for many thermophysical applications, e.g., for cooling of equipment, designing of new heat energy transportation and production systems and so on. This requires a systematic study of heat exchange properties of nanofluids. The present paper contains the measurement results for the heat transfer coefficient of the laminar and turbulent flow of nanofluids on the basis of distilled water with silica, alumina and copper oxide particles in a minichannel with circular cross section. The maximum volume concentration of particles did not exceed 2%. The dependence of the heat transfer coefficient on the concentration and size of nanoparticles was studied. It is shown that the use of nanofluids allows a significant increase in the heat transfer coefficient as compared to that for water. However, the obtained result strongly depends on the regime of flow. The excess of the heat transfer coefficient in the laminar flow is only due to an increase in the thermal conductivity coefficient of nanofluid, while in the turbulent flow the obtained effect is due to the ratio between the viscosity and thermal conductivity of nanofluid. The viscosity and thermal conductivity of nanofluids depend on the volume concentration of nanoparticles as well as on their size and material and are not described by classical theories. That is why the literature data are diverse and contradictory; they do not actually take into account the influence of the mentioned factors (size and material of nanoparticles). It has been shown experimentally and by a molecular dynamics method that the nanofluid viscosity increases while the thermal conductivity decreases with the decreasing dispersed particle size. It is found experimentally for the first time that the nanofluid viscosity coefficient depends on the particle material. The higher is the density of particles, the higher is the thermal conductivity coefficient of nanofluid.  相似文献   

16.
Huaqing Xie  Yang Li  Wei Yu 《Physics letters. A》2010,374(25):2566-2568
We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al2O3, ZnO, TiO2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al2O3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.  相似文献   

17.
This work presents a cell model for predicting the thermal conductivity of nanofluids. Effects due to the high specific surface area of the mono-dispersed nanoparticles and the micro-convective heat transfer enhancement associated with the Brownian motion of particles are addressed in detail. Novelty of the paper lies in its prediction of the non-linear dependence of thermal conductivity of nanofluids on particle volume fraction at low particle concentrations. The model is found to correctly predict the trends observed in experimental data over a wide range of particle sizes, temperatures and particle concentrations.  相似文献   

18.
The forced convection of nanofluid flow in a long microchannel is studied numerically according to the finite volume approach and by using a developed computer code. Microchannel domain is under the influence of a magnetic field with uniform strength. The hot inlet nanofluid is cooled by the heat exchange with the cold microchannel walls. Different types of nanoparticles such as Al2O3 and Ag are examined while the base fluid is considered as water. Reynolds number are chosen as Re=10 and Re=100. Slip velocity and temperature jump boundary conditions are simulated along the microchannel walls at different values of slip coefficient for different amounts of Hartmann number. The investigation of magnetic field effect on slip velocity and temperature jump of nanofluid is presented for the first time. The results are shown as streamlines and isotherms; moreover the profiles of slip velocity and temperature jump are drawn. It is observed that more slip coefficient corresponds to less Nusselt number and more slip velocity especially at larger Hartmann number. It is recommended to use Al2O3-water nanofluid instead of Ag-water to increase the heat transfer rate from the microchannel walls at low values of Re. However at larger amounts of Re, the nanofluid composed of nanoparticles with higher thermal conductivity works better.  相似文献   

19.
Limitations of conventional heat transfer fluids in different industries because of their poor thermal conductivity made heat transfer improvement in working fluids was performing, as a new method of advanced heat transfer. Therefore, the dispersion solid particle idea in fluids, which has been started with mili- and micrometer particles, completed by using nanoparticles and today nanofluids have been found to provide a considerable heat transfer and viscosity enhancement in comparison to conventional fluids such as water, ethylene glycol, and engine oil. In this study, molecular dynamics simulation was used to predict thermal conductivity and viscosity of nanofluids. Water was used as a base fluid. The simple point charge-extended (SPC/E) model was used for simulation of water and Ewald sum method for electrostatic interactions. Lennard–Jones potential for Van der Waals interactions, KTS potential for water and SiO2 and Spor and Heinzinger correlation for water and Pt were used. The results were compared with experimental data. For investigation of the effect of temperature, simulation was done for three temperatures of 20, 30, and 50?C. The results showed that the ratio of thermal conductivity of nanofluid to base fluid and viscosity will decrease as the temperature increases. The effect of the concentration of nanoparticle was studied for three different concentrations, namely, 0.45, 1.85, and 4%. The thermal conductivity of nanofluid increases with increasing the concentration. Moreover, the effect of two nanoparticle sizes (i.e., 5 and 7 nm) on the thermal conductivity of nanofluid was investigated. It was shown that an increase in the size causes a decrease in the thermal conductivity. Finally, by replacing the SiO2nanoparticle with a Pt nanoparticle in the nanofluid, it was observed that the kind of nanoparticle had not a considerable effect on increasing the thermal conductivity of nanofluid.  相似文献   

20.
This study investigates how TiO2/deionized water nanofluids affect the thermal performance of a two-phase closed thermosiphon (TPCT) at various states of operation, according to the surfactant types. A straight copper tube with an inner diameter of 13 mm, outer diameter of 15 mm, and length of 1 m was used as the TPCT, i.e., heat pipe. The nanofluid utilizing in experiments was prepared by mixing the TiO2 nano-particles at the rate of 1.3% and a surfactant at the rate of 0.5% with deionized water. The surfactants used for lowering the surface tension give rise to prevent the flocculation in nanofluids. In order to see the influences of the surfactants on the nanofluid properties, two types surfactants, Triton X-100 and sodium dodecyl benzene sulfonate (SDBS), were selected as nonionic and ionic surfactants and used in this study. The nanofluid was charged with in the ratio of 33.3% (equals to 44.2 ml) of the volume of the TPCT. To be able to make experimental comparisons, three different working fluids prepared under the same conditions in the same heat pipe were tested at three different heating powers (200, 300, and 400W) and three different coolant water flow rates (5, 7.5, and 10 g/s). The experiments were conducted for both TiO2 and Triton X 100–deionized water nanofluid and TiO2 and SDBS–deionized water nanofluid. The findings obtained from the tests were also compared to each other for showing off to what extent a surfactant affects the nanofluid properties. The maximum improvement in the thermal resistance was achieved by 43.26% in the experiment realized at 200 W input power and 7.5 g/s cooling water mass flow rate, in which the working fluid is TiO2 and SDBS–deionized water nanofluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号