首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of formate on the dicationic cluster [Pd(3)(dppm)(3)(mu(3)-CO)](2+) (dppm=bis(diphenylphosphinomethane) affords quantitatively the hydride cluster [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+). This new palladium-hydride cluster has been characterised by (1)H NMR, (31)P NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry. The unambiguous identification of the capping hydride was made from (2)H NMR spectroscopy by using DCO(2) (-) as starting material. The mechanism of the hydride complex formation was investigated by UV/Vis stopped-flow methods. The kinetic data are consistent with a two-step process involving: 1) host-guest interactions between HCO(2) (-) and [Pd(3)(dppm)(3)(mu(3)-CO)](2+) and 2) a reductive elimination of CO(2). Two alternatives routes to the hydride complex were also examined : 1) hydride transfer from NaBH(4) to [Pd(3)(dppm)(3)(mu(3)-CO)](2+) and 2) electrochemical reduction of [Pd(3)(dppm)(3)(mu(3)-CO)](2+) to [Pd(3)(dppm)(3)(mu(3)-CO)](0) followed by an addition of one equivalent of H(+). Based on cyclic voltammetry, evidence for a dual mechanism (ECE and EEC; E=electrochemical (one-electron transfer), C=chemical (hydride dissociation)) for the two-electron reduction of [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+) to [Pd(3)(dppm)(3)(mu(3)-CO)](0) is provided, corroborated by digital simulation of the experimental results. Geometry optimisations of the [Pd(3)(H(2)PCH(2)PH(2))(3)(mu(3)-CO)(mu(3)-H)](n) model clusters were performed by using DFT at the B3 LYP level. Upon one-electron reductions, the Pd--Pd distance increases from a formal single bond (n=+1), to partially bonding (n=0), to weak metal-metal interactions (n=-1), while the Pd--H bond length remains relatively the same.  相似文献   

2.
The dicationic palladium cluster Pd3(dppm)3(CO)2+ (dppm = bis(diphenylphosphino)methane) reacts with acid chlorides RCOCl (R = n-C6H13, t-Bu, Ph) to afford quantitatively the chloride adduct Pd3(dppm)3(CO)(Cl)+ and the acyl cation RCO+ as the organic counterpart. The dicationic reactive cluster can be reformed by electrolyzing the chloride complex with a copper anode leaving CuCl as a byproduct. The combination of these two reactions provides an electrocatalytic way to form the acylium from the acid chloride. Indeed, in CH2Cl2, 0.2 M NBu4PF6, or NBu4BF4, the electrolysis of the acid chloride in the presence of a catalytic amount of the cluster (1%) gives in good yields the acid fluoride RCOF, arising from the coupling of the acylium with a F(-) issued from the fluorinated supporting electrolyte. Alternatively, in CH2Cl2 or 0.2 M NBu4ClO4, by operating with an alcohol R'OH as the nucleophile, the electrolysis gives the ester RC(O)OR' as the only final product.  相似文献   

3.
The recently discovered and characterized [Pd4(dppm)4(H)]2+ cluster catalyst ( 1 ; dppm = Ph2PCH2PPh2), slowly evolves in the presence of the reducing tetraphenylborate anion, to generate a new diamagnetic cluster [Pd4(dppm)4(H)]+ ( 2 ). The evolution of this starting material 1 , has been monitored using NMR (1H and 31P), UV‐vis and ESR spectroscopy. This new 56‐electron Pd cluster has been characterized from X‐ray crystallography, and consists of a cyclic species exhibiting an approximate puckered square structure. The Pd2 bond distances are 2.7367(10) and 2.7495(11)Å and indicate the presence of weak bonding. The diagonal Pd···Pd separations are 3.646(10) and 3.590(10)Å indicating that the square is relatively symmetric. Such a structure is unprecedented for “Pdx(dppm)x” species. Although not formally observed from the X‐ray data, the hydride is assumed to be fluxional as found in 1 . The cyclic voltammogram for 2 exhibits an irreversible reduction wave at —1.65V vs SCE which is greater than that found for 1 , and corroborates the lower oxidation state for Pd (+1/2). The Pd‐H bonding scheme and MO symmetry for a model cluster where the hydride has been placed at the center of the Pd4 frame, have been addressed qualitatively using the EHMO model. These calculations demonstrate clearly that the Pd‐H bonding is strong.  相似文献   

4.
In a novel template synthesis of carbodiphosphoranes (CDPs), the phosphine functionalized CDP ligand C(dppm)(2) (dppm = Ph(2)PCH(2)PPh(2)) is formed in the coordination sphere of group 10 metals from CS(2) and 4 equivalents of dppm. The products are the PCP pincer complexes [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt) and 2 equivalents of dppmS. The compound C(dppm)(2), which is composed of a divalent carbon atom and two dppm subunits, represents a new PCP-type pincer ligand with the formally neutral carbon Lewis base of the CDP functionality as the central carbon. Treatment of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Pd, Pt) with hydrochloric acid results in protonation at the CDP carbon atom and the formation of the PCP pincer complexes [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt). The PCP pincer ligand [CH(dppm)(2)](+) involves a formally cationic central carbon donor. The reaction of [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl with HCl leads to the extrusion of NiCl(2) and formation of the diprotonated CDP compound [CH(2)(dppm)(2)]Cl(2), from which the monoprotonated conjugate base [CH(dppm)(2)]Cl is obtained upon addition of bases, such as NH(3). The crystal structures of [M(Cl)(C(dppm)(2)-κ3P,C,P)]Cl (M = Ni, Pd, Pt), [Ni(Cl)(C(dppm)(2)-κ3P,C,P)](2)[NiCl(4)], [M(Cl)(CH(dppm)(2)-κ3P,C,P)]Cl(2) (M = Pd, Pt) as well as [CH(2)(dppm)(2)]Cl(2) and [CH(dppm)(2)]Cl are presented. A comparison of the solid state structures reveals interesting features, e.g. infinite supramolecular networks mediated by C-H···Cl hydrogen bond interactions and an unexpected loss of molecular symmetry upon protonation in the complexes [M(CH(dppm)(2)-κ3P,C,P)(Cl)]Cl(2) (M = Pd, Pt) as a result of the flexible ligand backbone. Additionally the new compounds were characterized comprehensively in solution by multinuclear (31)P, (13)C and (1)H NMR spectroscopy: Several spectroscopic parameters show a striking variability in particular regarding the carbodiphosphorane functionality. Furthermore the compound [Ni(Cl)(C(dppm)(2)-κ3P,C,P)]Cl was examined by cyclic voltammetry (CV) and could be shown to display quasi-reversible oxidative as well as reductive behaviour.  相似文献   

5.
A new aspect of reactivity of the cluster [Pd3(dppm)3(micro3-CO)]n+, ([Pd3]n+, n = 2, 1, 0) with the low-valent metal-metal-bonded Pd2(dppm)2Cl2 dimer (Pd2Cl2) was observed using electrochemical techniques. The direct reaction between [Pd3]2+ and Pd2Cl2 in THF at room temperature leads to the known [Pd3(dppm)3(micro3-CO)(Cl)]+ ([Pd3(Cl)]+) adduct and the monocationic species Pd2(dppm)2Cl+ (very likely as Pd2(dppm)2(Cl)(THF)+, [Pd2Cl]+) as unambiguously demonstrated by UV-vis and 31P NMR spectroscopy. In this case, [Pd3]2+ acts as a strong Lewis acid toward the labile Cl- ion, which weakly dissociates from Pd2Cl2 (i.e., dissociative mechanism). Host-guest interactions between [Pd3]2+ and Pd2Cl2 seem unlikely on the basis of computer modeling because of the strong screening of the Pd-Cl fragment by the Ph-dppm groups in Pd2Cl2. The electrogenerated clusters [Pd3]+ and [Pd3]0 also react with Pd2Cl2 to unexpectedly form the same oxidized adduct, [Pd3(Cl)]+, despite the known very low affinity of [Pd3]+ and [Pd3]0 toward Cl- ions. The reduced biproduct in this case is the highly reactive zerovalent species "Pd2(dppm)2" or "Pd(dppm)" as demonstrated by quenching with CDCl3 (forming the well-known complex Pd(dppm)Cl2) or in presence of dppm (forming the known Pd2(dppm)3 d10-d10 dimer). To bring these halide-electron exchange reactions to completion for [Pd3]+ and [Pd3]0, 0.5 and 1.0 equiv of Pd2Cl2 are necessary, respectively, accounting perfectly for the number of exchanged electrons. The presence of a partial dissociation of Pd2Cl2 into the Cl- ion and the monocation [Pd2Cl]+, which is easier to reduce than Pd2Cl2, is suggested to explain the overall electrochemical results. It is possible to regulate the nature of the species formed from Pd2Cl2 by changing the state of charge of the title cluster.  相似文献   

6.
The two clusters [8,8-(eta(2)-dppm)-8-(eta(1)-dppm)-nido-8,7-RhSB(9)H(10)] (1) and [9,9-(eta(2)-dppm)-9-(eta(1)-dppm)-nido-9,7,8-RhC(2)B(8)H(11)] (2) (dppm = PPh(2)CH(2)PPh(2)), both of which contain pendant PPh(2) groups, react with BH(3).thf to afford the species [8,8-eta(2)-(eta(2)-(BH(3)).dppm)-nido-8,7-RhSB(9)H(10)] (3) and [9,9-eta(2)-(eta(2)-(BH(3)).dppm))-nido-9,7,8-RhC(2)B(8)H(11)] (4), respectively. These two species are very similar in that they both contain the bidentate ligand [(BH(3)).dppm], which coordinates to the Rh center via a PPh(2) group and also via a eta(2)-BH(3) group. Thus, the B atom in the BH(3) group is four-coordinate, bonded to Rh by two bridging hydrogen atoms, to a terminal H atom, and to a PPh(2) group. At room temperature, the BH(3) group is fluxional; the two bridging H atoms and the terminal H atom are equivalent on the NMR time scale. The motion is arrested at low temperature with DeltaG++ = ca. 37 and 42 kJ mol(-1), respectively, for 3 and 4. Both species are characterized completely by NMR and mass spectral measurements as well as by elemental analysis and single-crystal structure determinations.  相似文献   

7.
Reactions of [MCl2(L-L)], M = Pt, Pd; L-L = bis(diphenylphosphino)methane (dppm) or bis(diphenylphosphino)ethane (dppe), with NaC5H4SN in a 1 : 2 molar ratio lead to mononuclear species [M(S-C5H4SN)2(P-P)], M = Pt; L-L = dppm (1) or dppe (2) and M = Pd; L-L = dppe (3), as well as to the dinuclear [Pd2(micro2-S,N-C5H4SN)(micro2-kappa2S-C5H4SN)(micro2-dppm)(S-C5H4SN)2] (4). In contrast, reaction of [MCl2(dppm)] with NaC5H4SN in a 1 : 1 molar ratio leads to [Pd2(micro2-S,N-C5H4SN)3(micro2-dppm)]Cl (5) and trans-[Pt(S-C5H4SN)2(PPh2Me)2] (6) respectively. The latter is formed in low yield by cleavage of the dppm ligand. The dinuclear derivatives 4 and 5 present an A-frame and lantern structure, respectively. The former showing three different co-ordination modes in the same molecule with a short Pd-Pd distance of 2.9583 (9) A and the latter with three bridging S,N thionate ligands showing a shorter Pd-Pd distance of 2.7291 (13) A. Both distances could be imposed by the bridging ligands or point to some sort of metal-metal interaction.  相似文献   

8.
The title cluster, [Pd(3)(mu(3)-CO)(dppm)(3)](2+) (dppm=bis(diphenylphosphino)methane), reacts with one equivalent of hydroxide anions (OH(-)), from tetrabutylammonium hydroxide (Bu(4)NOH), to give the paramagnetic [Pd(3)(mu(3)-CO)(dppm)(3)](+) species. Reaction with another equivalent of OH(-) leads to the zero-valent compound [Pd(3)(mu(3)-CO)(dppm)(3)](0). From electron paramagnetic resonance analysis of the reaction medium using the spin-trap agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the 2-tetrahydrofuryl or methyl radicals, deriving from the tetrahydrofuran (THF) or dimethyl sulfoxide (DMSO) solvent, respectively, were detected. For both [Pd(3)(mu(3)-CO)(dppm)(3)](2+) and [Pd(3)(mu(3)-CO)(dppm)(3)](+), the mechanism involves, in a first equilibrated step, the formation of a hydroxide adduct, [Pd(3)(mu(3)-CO)(dppm)(3)(OH)]((n-1)+) (n=1, 2), which reacts irreversibly with the solvent. The kinetics were resolved by means of stopped-flow experiments and are consistent with the proposed mechanism. In the presence of an excess of Bu(4)NOH, an electrocatalytic process was observed with modest turnover numbers (7-8). The hydroxide adducts [Pd(3)(mu(3)-CO)(dppm)(3)(OH)]((n-1)+) (n=1, 2), which bear important similarities to the well-known corresponding halide adducts [Pd(3)(mu(3)-CO)(dppm)(3)(mu(3)-X)](n) (X=Cl, Br, I), have been studied by using density functional theory (DFT). Although the optimised geometry for the cluster in its +2 and 0 oxidation states (i.e., cation and anion clusters, respectively) is the anticipated mu(3)-OH form, the paramagnetic species, [Pd(3)(mu(3)-CO)(dppm)(3)(OH)](0), shows a mu(2)-OH form; this suggests an important difference in electronic structure between these three species.  相似文献   

9.
The stoichiometric and catalytic activations of alkyl halides and acid chlorides by the unsatured Pd(3)(dppm)(3)(CO)(2+) cluster (Pd(3)(2+)) are investigated in detail. A series of alkyl halides (R-X; R = t-Bu, Et, Pr, Bu, allyl; X = Cl, Br, I) react slowly with Pd(3)(2+) to form the corresponding Pd(3)(X)(+) adduct and "R(+)". This activation can proceed much faster if it is electrochemically induced via the formation of the paramagnetic species Pd(3)(+). The latter is the first confidently identified paramagnetic Pd cluster. The kinetic constants extracted from the evolution of the UV-vis spectra for the thermal activation, as well as the amount of electricity to bring the activation to completion for the electrochemically induced reactions, correlate the relative C-X bond strength and the steric factors. The highly reactive "R(+)" species has been trapped using phenol to afford the corresponding ether. On the other hand, the acid chlorides react rapidly with Pd(3)(2+) where no induction is necessary. The analysis of the cyclic voltammograms (CV) establishes that a dissociative mechanism operates (RCOCl --> RCO(+) + Cl(-); R = t-Bu, Ph) prior to Cl(-) scavenging by the Pd(3)(2+) species. For the other acid chlorides (R = n-C(6)H(13), Me(2)CH, Et, Me, Pr), a second associative process (Pd(3)(2+) + RCOCl --> Pd(3)(2+.....)Cl(CO)(R)) is seen. Addition of Cu(NCMe)(4)(+) or Ag(+) leads to the abstraction of Cl(-) from Pd(3)(Cl)(+) to form Pd(3)(2+) and the insoluble MCl materials (M = Cu, Ag) allowing to regenerate the starting unsaturated cluster, where the precipitation of MX drives the reaction. By using a copper anode, the quasi-quantitative catalytic generation of the acylium ion ("RCO(+)") operates cleanly and rapidly. The trapping of "RCO(+)" with PF(6)(-) or BF(4)(-) leads to the corresponding acid fluorides and, with an alcohol (R'OH), to the corresponding ester catalytically, under mild conditions. Attempts were made to trap the key intermediates "Pd(3)(Cl)(+)...M(+)" (M(+) = Cu(+), Ag(+)), which was successfully performed for Pd(3)(ClAg)(2+), as characterized by (31)P NMR, IR, and FAB mass spectrometry. During the course of this investigation, the rare case of PF(6)(-) hydrolysis has been observed, where the product PF(2)O(2)(-) anion is observed in the complex Pd(3)(PF(2)O(2))(+), where the substrate is well-located inside the cavity formed by the dppm-Ph groups above the unsatured face of the Pd(3)(2+) center. This work shows that Pd(3)(2+) is a stronger Lewis acid in CH(2)Cl(2) and THF than AlCl(3), Ag(+), Cu(+), and Tl(+).  相似文献   

10.
A cyclic voltammogram of aqueous 0.1 mol dm(-3) triflic acid solutions of the d6 bioxo-capped M-M bonded cluster [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ at a glassy carbon electrode at 25 degrees C gives rise to an irreversible 3e- cathodic wave to a d9 Mo(III)3 species at -0.8 V vs. SCE which on the return scan gives rise to two anodic waves at +0.05 V vs. SCE (E(1/2), 1e- reversible to d8 Mo(III)2Mo(IV)) and +0.48 V vs. SCE (2e- irreversible back to d6 Mo(IV)3). The number of electrons passed at each redox wave has been confirmed by redox titration and controlled potential electrolysis which resulted in 90% recovery of [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ following electrochemical re-oxidation at +0.8 V. A corresponding CV study of the d8 monoxo-capped W(III)2W(IV) cluster [W3(mu3-O)(O2CCH3)6(H2O)3]2+ gives rise to a reversible 1e- cathodic process at -0.92 V vs. SCE to give the d9 W(III)3 species [W3(mu3-O)(O2CCH3)6(H2O)3]+; the first authentic example of a W(III) complex with coordinated water ligands. However the cluster is too unstable (O2/water sensitive) to allow isolation. Comparisons with the cv study on [Mo3(mu3-O)2(O2CCH3)6(H2O)3]2+ suggest irreversible reduction of this complex to monoxo-capped [Mo(III)3(mu3-O)(O2CCH3)6(H2O)3]+ followed by reversible oxidation to its d8 counterpart [Mo3(mu3-O)(O2CCH3)6(H2O)3]2+ (Mo(III)2Mo(IV)) and finally irreversible oxidation back to the starting bioxo-capped cluster. Exposing the d9 Mo(III)3 cluster to air (O2) however gives a different final product with evidence of break up of the acetate bridged framework. Corresponding redox processes on d6 [W3(mu3-O)2(O2CCH3)6(H2O)3]2+ are too cathodic to allow similar generation of the monoxo-capped W(III)3 and W(III)2W(IV) clusters at the electrode surface.  相似文献   

11.
Two families of organometallic polymers built upon the bimetallic M2(dppm)2L(2)2+ fragments (M = Pd, Pt; dppm = bis(diphenylphosphino)methane, L = 1,4-diisocyano-2,3,5,6-tetramethylbenzene (diiso), 1,8-diisocyano-p-menthane (dmb), 1-isocyano-2,6-dimethylbenzene, 1-isocyano-4-isopropylbenzene, and tert-butylisocyanide) were synthesized and fully characterized (1H and 31P NMR, X-ray crystallography (model compounds), IR, Raman, chem. anal., TGA, DSC, powder XRD, 31P NMR T1 and NOE, light scattering, and conductivity measurements). Evidence for polymers in the solid state is provided from the swelling of the polymers upon dissolution and the formation of stand-alone films. However, these species become small oligomers when dissolved. The materials are luminescent in the solid state at 298 and 77 K and in PrCN solution at 77 K. These emissions result from triplet 3(d sigma d sigma*) states despite the presence of low-lying pi-pi* MO levels according to DFT calculations for the aryl isocyanide model compounds. The emission band maxima are located between 640 and 750 nm and exhibit lifetimes of 3-6 ns for the Pd species and 3-4 micros for the Pt analogues in PrCN solution at 77 K. No evidence of intramolecular excitonic photoprocesses was found in any of the polymers.  相似文献   

12.
The heterodinuclear d(9)-d(9) title compound 1, whose crystal structure has been solved, reacts with dppm [bis(diphenylphosphino)methane] in the presence of NaBF4 to generate the salt [ClPd(mu-dppm)2Pt(eta(1)-dppm)][BF4] (2a), which contains a Pt-bound dangling dppm ligand. 2a has been characterized by 1H and 31P NMR, Fourier transform Raman [nu(Pd-Pt) = 138 cm(-1)], and UV-vis spectroscopy [lambda(max)(dsigma-dsigma*) = 366 nm]. In a similar manner, [ClPd(mu-dppm)2Pt(eta(1)-dppm=O)][BF4] (2b), ligated with a dangling phosphine oxide, has been prepared by the addition of dppm=O. The molecular structure of 2b has been established by an X-ray diffraction study. 2a reacts with 1 equiv of NaBH4 to form the platinum hydride complex [(eta(1)-dppm)Pd(mu-dppm)2Pt(H)][BF4] (3). Both 2a and 3 react with an excess of NaBH4 to provide the mixed-metal d(10)-d(10) compound [Pd(mu-dppm)3Pt] (4). The photophysical properties of 4 were studied by UV-vis spectroscopy [lambda(max)(dsigma-dsigma*) = 460 nm] and luminescence spectroscopy (lambda(emi) = 724 nm; tau(e) = 12 +/- 1 micros, 77 K). The protonation of 1 and 4 leads to [ClPd(mu-dppm)2(mu-H)PtCl]+ (5) and 3, respectively. Stoichiometric treatment of 1 with cyclohexyl or xylyl isocyanide yields [ClPd(mu-dppm)2Pt(CNC6H11)]Cl (6a) and [ClPd(mu-dppm)2Pt(CN-xylyl)]Cl (6b) ligated by terminal-bound CNR ligands. In contrast, treatment of 1 with the phosphonium salt [C[triple bond]NCH2PPh3]Cl affords the structurally characterized A-frame compound [ClPd(mu-dppm)2(mu-C=NCH2PPh3)PtCl]Cl (6c), spanned by a bridging isocyanide ligand. The electrochemical reduction of 2a at -1.2 V vs SCE, as well as the reduction of 5 in the presence of dppm, leads to a mixture of products 3 and 4. Further reduction of 3 at -1.7 V vs SCE generates 4 quantitatively. The reoxidation at 0 V of 4 in the presence of Cl- ions produces back complex 2a. The whole mechanism of the reduction of 1 has been established.  相似文献   

13.
以FeCl_2·4H_2O与(NH_4)_2MoS_4按3:1(克分子比)在DMF中反应,得到Fe(DMF)_5[(FeCl_2)_2MoS_4]。X-射线衍射单晶结构测定确定该化合物具层状结构。与笼状结构的G-系模型物相比较,指出Mg(DMF)_6~(2+)的较强成笼倾向使三核“元件”化合物Mg(DHF)_6[(FeCl_2)_2MoS_4)无法生成,据此提出Mg(DMF)_6~(2+)的笼格效应。  相似文献   

14.
Wei ZH  Li HX  Zhang WH  Ren ZG  Zhang Y  Lang JP  Abrahams BF 《Inorganic chemistry》2008,47(22):10461-10468
Treatment of [Et 4N] 2[(edt) 2Mo 2S 2(mu-S) 2] ( 1) (edt = ethanedithiolate) with equimolar CuBr afforded an anionic hexanuclear cluster [Et 4N] 2[(edt) 2Mo 2(mu-S) 3(mu 3-S)Cu] 2.2CH 2Cl 2 ( 2.2CH 2Cl 2). On the other hand, reactions of 1 with 2 equiv of CuBr in the presence of 1,2-bis(diphenylphosphino)methane (dppm) and pyridine (Py) ligands gave rise to two neutral tetranuclear clusters [(edt) 2Mo 2O 2(mu-S) 2Cu 2(dppm) 2] ( 3) and [(edt) 2Mo 2O(mu 3-S)(mu-S) 2Cu 2(Py) 4] ( 4), respectively. The reaction of 1 with 2 equiv of CuBr followed by the addition of a mixture of dppm and Py (molar ratio = 1:2) yielded another neutral tetranuclear cluster [(edt) 2Mo 2(mu-S) 2(mu 3-S) 2Cu 2(dppm)(Py)].Py ( 5.Py). Compounds 2- 5 have been characterized by elemental analysis, UV-vis spectra, IR spectra, (1)H NMR, and X-ray analysis. The structure of the dianion of 2 can be viewed as having a [Mo 4S 8Cu 2] core in which two chemically equivalent [Mo 2(mu-S) 3(mu 3-S)(edt) 2Cu] (-) anions are linked by two extra Cu-S edt bonds. The molecular structure of 3 may be visualized as being built of one [(edt) 2Mo 2X 2(mu-S) 2] (2-) dianion and one [Cu 2(dppm) 2] (2+) dication that are connected by a pair of M-mu-S edt bonds. Compound 4 is formed by the affiliation of two Cu(I) atoms only at one end of the [(edt) 2Mo 2S 2(mu-S) 2] moiety, connecting with the S t atoms and the S edt atom. Cluster 5.Py can be viewed as being constructed from the addition of one Cu atom onto the incomplete cubanelike [Mo 2S 4Cu] framework through one terminal sulfur and one edt sulfur. Among the four clusters, 3 and 4 have internal mirror symmetry or pseudo mirror symmetry, respectively, while 2 and 5 are asymmetric clusters with racemic formation.  相似文献   

15.
Reaction of Ni(COD)(2) (COD = cyclooctadiene) with dppm (dppm = bis(diphenylphosphino) methane) followed by addition of alkyl or aryl isocyanides yields the class of nickel(0) dimers Ni(2)(mu-CNR)(CNR)(2)(mu-dppm)(2) (R = CH(3) (1), n-C(4)H(9) (2), CH(2)C(6)H(5) (3), i-C(3)H(7) (4), C(6)H(11) (5), t-C(4)H(9) (6), p-IC(6)H(4) (7), 2,6-(CH(3))(2)C(6)H(3) (8)). The cyclic voltammograms of the dimers exhibit two sequential single electron oxidations to the +1 and +2 forms. Specular reflectance infrared spectroelectrochemical (IRSEC) measurements demonstrate reversible interconversions between the neutral Ni(0) dimers and their +1 and +2 forms. Bulk samples of the +2 forms are prepared by chemical oxidation using [FeCp(2)][PF(6)], while the +1 forms are prepared by the comproportionation of neutral and +2 forms. The neutral complexes 6 and 8 were characterized by X-ray diffraction as symmetric, locally tetrahedral binuclear Ni(0) complexes. The +2 forms of these complexes, 6(2+) and 8(2+), have asymmetric structures with one locally square planar and one locally tetrahedral metal center, evidence for a Ni(II)-Ni(0) mixed valence state. The X-ray structural characterization of 6(+) is symmetrical and qualitatively similar to that of the neutral complex 6. The +1 forms all exhibit intense near IR electronic absorptions that are assigned as intervalence charge transfer (IVCT) bands. On the basis of structural, spectroscopic, and electrochemical data, the +1 forms of the complexes, 1(+)-8(+), are assigned as Robin-Day class III, fully delocalized Ni(+0.5)-Ni(+0.5) mixed valence complexes.  相似文献   

16.
The Pd(II) complexes of new 2N1O-donor ligands containing a pendent indole, 3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]ethylindole (Htbu-iepp), 1-methyl-3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]ethylindole (Htbu-miepp), 3-[N-2-pyridylmethyl-N-2-hydroxy-3,5-di(tert-butyl)benzylamino]methylindole (Htbu-impp), and 3-(N-2-pyridylmethyl-N-4-hydroxybenzylamino)ethylindole (Hp-iepp) (H denotes a dissociable proton), were synthesized, and the structures of [Pd(tbu-iepp)Cl] (1a), [Pd(tbu-iepp-c)Cl] (1b), [Pd(tbu-miepp)Cl] (3), and [Pd(p-iepp-c)Cl] (4) (tbu-iepp-c and p-iepp-c denote tbu-iepp and p-iepp bound to Pd(II) through a carbon atom, respectively) were determined by X-ray analysis. Complexes 1a prepared in CH(2)Cl(2)/CH(3)CN and 3 prepared in CH(3)CN have a pyridine nitrogen, an amine nitrogen, a phenolate oxygen, and a chloride ion in the coordination plane. Complex 1b prepared in CH(3)CN has the same composition as 1a and was revealed to have the C2 atom of the indole ring bound to Pd(II) with the Pd(II)-C2 distance of 1.973(2) A. The same Pd(II)-indole C2 bonding was revealed for 4. Interconversion between 1a and 1b was observed for their solutions, the equilibrium being dependent on the solvent used. Reaction of 1b and 4 with 1 equiv of Ce(IV) in DMF gave the corresponding one-electron-oxidized species, which exhibited an ESR signal at g = 2.004 and an absorption peak at approximately 550 nm, indicating the formation of the Pd(II)-indole pi-cation radical species. The half-life, t(1/2), of the indole radical species at room temperature was calculated to be 20 s (k(obs) = 3.5 x 10(-)(2) s(-)(1)) for 1b. The cyclic voltammogram for 1b in DMF gave two irreversible oxidation peaks at E(pa) = 0.68 and 0.80 V (vs Ag/AgCl), which were ascribed to the oxidation processes of the coordinated indole and phenolate moieties, respectively.  相似文献   

17.
The mononuclear cyclometalated Pd(II) complexes [Pd(L1)X] (HL1 = 6-phenyl-2,2'-bipyridine; X = Cl, la; Br, 1b; I, 1c), [Pd(L1)PPh3]+ (1d), [Pd(L2-5)Cl] [2a-5a, HL2-5 = 4-(aryl)-6-phenyl-2,2'-bipyridine; aryl = phenyl (2), 4-chlorophenyl (3), 4-tolyl (4), 4-methoxyphenyl (5)] and the binuclear derivatives [Pd2(L1-5)2(mu-dppm)]2+ (1e-5e, dppm = bis(diphenylphosphino)methane) and [Pd2(L1)2(mu-dppCs)]2+, (1f, dppC5 = 1,5-bis(diphenylphosphino)pentane) were prepared. The crystal structures of 1d(ClO4), 1e(ClO4)2 x DMF, and 2e(ClO4)2 have been determined by X-ray crystallography. The magnitude of the Pd-Pd distances in le and 2e (3.230(1) and 3.320(2) A, respectively) suggest minimal metal-metal interaction, although pi-stacking of the aromatic ligands (interplanar separations 3.34 and 3.35 A, respectively) is evident. All complexes display low-energy UV absorptions at lambda approximately 390 nm, which are tentatively assigned to 1MLCT transitions; red shifts resulting from Pd-Pd interactions in the binuclear species are not apparent. The complexes in this work are non-emissive at 298 K, but the cationic derivatives exhibit intense luminescence at 77 K. The structured emissions of 1d and 1f in MeOH/EtOH glass (lambdamax 467-586 nm) and all cationic species in the solid state (lambdamax 493-578 nm) are assigned to intraligand excited states. Complexes le-5e display dual emissions in MeOH/EtOH glass at 77 K, and the broad structureless bands at lambdamax 626-658 nm are attributed to pi-pi excimeric IL transitions. A comparison between the photophysical properties of Pd(II) and Pt(II) congeners is presented.  相似文献   

18.
Cyclic voltammetry (CV), rotating disk electrode voltammetry (RDE) and bulk electrolysis were used to investigate the electrochemical oxidation of the title cluster in acetonitrile (CH3CN). Two irreversible 2-electron oxidation processes occur at +0.95 V and +1.15 V vs. SCE. Bulk electrolysis demonstrates that the d9–d9 Pd2(dppm)2(NCCH3) 2 2+ 4 complex is generated among the first intermediates, and the d8 Pd(dppm)(NCCH3) 2 2+ 3 is formed as the final product. The intermediacy of “Pd3(dppm)3(CO)4+” and “Pd3(dppm) 3 4+ ” is suspected but not confirmed. This oxidation process exhibits a close resemblance to the photo oxidative reactivity of the title cluster in the presence of chlorocarbons (R–Cl) for which the sole observed product is Pd(dppm)Cl2.This paper is dedicated to Professor Brian Johnson on the occasion of his retirement.  相似文献   

19.
Cationic dinuclear Cu(II) complexes 3 and 4 have been prepared using the novel hydroquinone-based imine chelators 2,5-((i)Pr(2)NCH(2)CH(2)N[double bond, length as m-dash]CH)(2)-1,4-(OH)(2)-C(6)H(2) (1) and 2,5-(pyCH(2)CH(2)N[double bond, length as m-dash]CH)(2)-1,4-(OH)(2)-C(6)H(2) (2), respectively (py = 2-pyridyl). X-Ray quality crystals of both complexes were grown from their DMF solutions. The sterically more encumbered compound crystallizes in the form of discrete dinuclear entities with Cu(II) centres in a distorted square-planar ligand environment (one coordination site is occupied by a DMF molecule). The pyridyl derivative 4 features dinuclear hydroquinone-bridged subunits similar to 3. However, the Cu(II) ions are now six-coordinate with two DMF molecules at an axial and an equatorial position of a Jahn-Teller-distorted octahedron. Moreover, the dinuclear subunits are no longer isolated but linked with each other via bridging hydroquinone oxygen atoms which occupy the second apical position of each octahedron. The structure suggests that the magnetic properties of the resulting coordination polymer of 4 could be described by a model valid for dimerized spin chains. As a result of this analysis the antiferromagnetic coupling constants J(1)/k(B) = 9.9 K (intradimer) and J(2)/k(B) = 0.9 K (interdimer) are obtained. Both in 3 and in 4, the hydroquinone --> semiquinone transition of the central bridging unit (E degrees ' = + 0.57 V, 3; E degrees ' = + 0.51 V, 4; DMF; vs. SCE) displays features of chemical reversibility. In the case of , reduction of Cu(II) centres requires a peak potential of E(p) = - 0.42 V.  相似文献   

20.
A series of carboxylate-substituted trinudear molybdenum dus-ter compounds formulated as Mo3S4(DTP)3(RCO2)(L), where RffiH, CH3, C2H5, CH2Cl, CCl3, R^1C6H4(R^1 is the group on the benzene ring of aromatic carboxylate ), L=pyridine,CH3CN, DMF, have been synthesized by the ligand substitu-tion reaction. The dissociation of the loosely-coordinated ligand L from the cluster core was studied by ^31p NMR. The dissocia-tion process of L is related to the solvent, temperature, and acidity of carboxylate groups, so as to affect the solution struc-ture and reactive properties of the duster. The long-distance in-teraction between ligands RCO2 and L is transported by Mo3S4 core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号