首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This study deals with macroscopic modeling of heat transfer in porous media subjected to high temperature. The derivation of the macroscopic model, based on thermal non-equilibrium, includes coupling of radiation with the other heat transfer modes. In order to account for non-Beerian homogenized phases, the radiation model is based on the generalized radiation transfer equation and, under some conditions, on the radiative Fourier law. The originality of the present upscaling procedure lies in the application of the volume averaging method to local energy conservation equations in which radiation transfer is included. This coupled homogenization mainly raises three challenges. First, the physical natures of the coupled heat transfer modes are different. We have to deal with the coexistence of both the material system (where heat conduction and/or convection take place) and the non-material radiation field composed of photons. This radiation field is homogenized using a statistical approach leading to the definition of radiation properties characterized by statistical functions continuously defined in the whole volume of the porous medium. The second difficulty concerns the different scales involved in the upscaling procedure. Scale separation, required by the volume averaging method, must be compatible with the characteristic length scale of the statistical approach. The third challenge lies in radiation emission modeling, which depends on the temperature of the material system. For a semi-transparent phase, this temperature is obtained by averaging the local-scale temperature using a radiation intrinsic average while a radiation interface average is used for an opaque phase. This coupled upscaling procedure is applied to different combinations of opaque, transparent, or semi-transparent phases. The resulting macroscopic models involve several effective transport properties which are obtained by solving closure problems derived from the local-scale physics.  相似文献   

2.
The homogenisation method with multiple scale expansions is used to investigate the slow and isothermal flow of generalised Newtonian fluids through anisotropic porous media. From this upscaling it is shown that the first-order macroscopic pressure gradient can be defined as the gradient of a macroscopic viscous dissipation potential, with respect to the first-order volume averaged fluid velocity. The macroscopic dissipation potential is the volume-averaged of local dissipation potential. Using this property, guidelines are proposed to build macroscopic tensorial permeation laws within the framework defined by the theory of anisotropic tensor functions and by using macroscopic isodissipation surfaces. A quantitative numerical study is then performed on a 3D fibrous medium and with a Carreau–Yasuda fluid in order to illustrate the theoretical results deduced from the upscaling.  相似文献   

3.
4.
5.
Single-phase fluid flow in porous media is usually direction dependent owing to the tortuosity associated with the internal structures of materials that exhibit inherent anisotropy. This article presents an approach to determine the tortuosity and permeability of porous materials using a structural measure quantifying the anisotropic distribution of pore voids. The approach uses a volume averaging method through which the macroscopic tortuosity tensor is related to both the average porosity and the directional distribution of pore spaces. The permeability tensor is derived from the macroscopic momentum balance equation of fluid in a porous medium and expressed as a function of the tortuosity tensor and the internal structure of the material. The analytical results generally agree with experimental data in the literature.  相似文献   

6.
A general three-dimensional bioheat equation for local tissue heat transfer has been derived with less assumptions, exploiting a volume averaging theory commonly used in fluid-saturated porous media. The volume averaged energy equations obtained for the arterial blood, venous blood and tissue were combined together to form a single energy equation in terms of the tissue temperature alone. The resulting energy equation turns out to be remarkably simple as we define the effective thermal conductivity tensor, which accounts not only for the countercurrent heat exchange mechanism but also for the thermal dispersion mechanism. The present equation for local tissue heat transfer naturally reduces to the Weinbaum-Jiji equation for the unidirectional case.  相似文献   

7.
The macroscopic governing equations of a compressible multicomponents flow with non-uniform viscosity and with mass withdrawal (due to heterogeneous reactions) in a porous medium are developed. The method of volume averaging was used to transform local (or microscopic) governing equations into averaged (or macroscopic) governing equations. The impacts of compressibility, non-uniform viscosity, and mass withdrawal on the form of the averaged equations and on the value of the macroscopic transport coefficients were investigated. The results showed that the averaged mass conservation equation is significantly affected by mass withdrawal when a specific criterion on the size of the domain is respected. The results also showed that the form of the averaged momentum equations is not affected by mass withdrawal, by compressibility effects or by non-uniform viscosity, provided that the Reynolds number at the pore level is small. Nonetheless, the velocity field is affected by the heterogeneous reaction via the averaged mass conservation equation, and also by viscosity variations due to the presence of the volume-averaged viscosity (which value changes with position) in the averaged momentum equations. A new closure variable definition was proposed to formulate the closure problem, which avoided the need to solve an integro-differential equation in the closure problem. This formulation was used to show that the permeability tensor only depends on the geometry of the porous medium. In other words, that tensor is independent on whether the fluid is compressible/incompressible, has uniform/non-uniform viscosities, and whether mass withdrawal due to heterogeneous reactions is present/absent.  相似文献   

8.
The method of volume averaging is applied to ordered and disordered spatially periodic porous media in two dimensions in order to compute the components of the dispersion tensor for low Peclet numbers ranging from 0.1 to 100. The effect of different parameters on the dispersion tensor is studied. The longitudinal dispersion coefficient decreases with an increase in disorder while the transverse dispersion coefficient increases. The location of discs in the unit cell influences the longitudinal dispersion coefficient significantly, compared to the transverse dispersion coefficient. Under a laminar flow regime, the dispersion coefficient is independent of Rep. The predicted functional dependency of dispersion on the Peclet number agrees with experimental data. The predicted longitudinal dispersion coefficient in disordered porous media is smaller than that of the experimental data. However, the predicted transverse dispersion coefficient agrees with the experimental data.  相似文献   

9.
Upscaling Forchheimer law   总被引:2,自引:0,他引:2  
We investigate the high velocity flow in heterogeneous porous media. The model is obtained by upscaling the flow at the heterogeneity scale where the Forchheimer law is assumed to be valid. We use the method of multiple scale expansions, which gives rigorously the macroscopic behaviour without any prerequisite on the form of the macroscopic equations. We show that Forchheimer law does not generally survive upscaling. The macroscopic flow law is strongly non-linear and anisotropic. A 2-point Padé approximation of the flow law in the form of a Forchheimer law is given. However, this approximation is generally poor. These results are illustrated in two particular cases: a layered composite porous media and a composite constituted by a square array of circular porous inclusions embedded in a porous matrix. We show that non-linearities are sources of anisotropy.  相似文献   

10.
We investigate the filtration law of incompressible viscous Newtonian fluids in rigid non-inertial porous media, for example, rotating porous media. The filtration law is obtained by upscaling the flow at the pore scale. We use the method of multiple scale expansions which gives rigorously the macroscopic behaviour without any prerequisite on the form of the macroscopic equations. For finite Ekman numbers the filtration law is shown to resemble a Darcy's law, but with a non-symmetric permeability tensor which depends on the angular velocity of the porous matrix. We obtain the filtration analog of the Hall effect. For large Ekman numbers the filtration law is a small correction to the classical Darcy's law. The corrector is antisymmetric. In this case we recover a structure of law which is similar to phenomenological laws introduced in the literature, but with a dissimilar effective coefficient.  相似文献   

11.
12.
An assessment of the stress tensors used currently for the modeling of partially saturated porous media is made which includes concepts like total stress, solid phase stress, and solid pressure. Thermodynamically constrained averaging theory is used to derive the solid phase stress tensor. It is shown that in the upscaling procedure the Hill conditions are satisfied, which is not trivial. The stress tensor is then compared to traditional stress measures. The physical meaning of two forms of solid pressure and of the Biot coefficient is clarified. Finally, a Bishop-Skempton like form of the stress tensor is obtained and a form of the total stress tensor that does not make use of the effective stress concept.  相似文献   

13.
A Two-Equation Model for Heat Conduction in Porous Media (I: Theory)   总被引:1,自引:0,他引:1  
A two-equation model is presented which describes the conservation of heat in each phase of a porous medium in which diffusion is the predominant means of heat transfer, and of which the phases are not in thermal equilibrium with each other. The model is derived using the method of local volume averaging. This formulation, together with the introduction of characteristic temperature distributions, yields the definition of an effective and a coupled thermal conductivity tensor.  相似文献   

14.
The governing equation describing solute transport in porous media is reformulated using standard volume averaging techniques. The alternative formulation is based on a modified definition of the deviation, which allows for variation of macroscopic velocity across the REV. The new equation contains additional scale-dependent terms which are functions of the size of the averaging volume (REV). This result indicates that the scale-dependent nature of the dispersion phenomenon is inherent even at the scale of the REV.  相似文献   

15.
In this paper, the method of large-scale averaging is used to develop two different one-equation models describing dispersion in heterogeneous porous media. The first model represents the case of large-scale mass equilibrium, while the second represents the asymptotic behavior of a two-equation model obtained by large-scale averaging. It is shown that a one-equation, non-equilibrium model can be developed even when the intrinsic large-scale averaged concentrations for each region are not equal. The solution of this non-equilibrium model is equivalent to the asymptotic behavior of the two-equation model.  相似文献   

16.
多孔连续体理论框架下的非饱和多孔介质广义有效压力定义和Bishop参数的定量表达式长期以来存在争议,这也影响了对与其直接相关联的非饱和多孔介质广义Biot有效应力的正确预测.基于随时间演变的离散固体颗粒-双联液桥-液膜体系描述的Voronoi胞元模型,利用由模型获得的非饱和颗粒材料表征元中水力-力学介观结构和响应信息,文章定义了低饱和度多孔介质局部材料点的有效内状态变量:非饱和多孔连续体的广义Biot有效应力和有效压力,导出了其表达式.所导出的有效压力公式表明,非饱和多孔连续体的有效压力张量为各向异性,它不仅对非饱和多孔连续体广义Biot有效应力张量的静水应力分量的影响呈各向异性,同时也对其剪切应力分量有影响.文章表明,非饱和多孔连续体中提出的广义Biot理论和双变量理论的基本缺陷在于它们均假定反映非混和两相孔隙流体对固相骨架水力-力学效应的有效压力张量为各向同性.此外,为定义各向同性有效压力张量和作为加权系数而引入的Bishop参数并不包含对非饱和多孔连续体中局部材料点水力-力学响应具有十分重要效应的基质吸力.所导出的非饱和多孔介质广义Biot有效应力和有效压力公式(包括反映有效压力...  相似文献   

17.
The derivation of an expression of the macroscopic stress tensor in terms of microscopic variables in systems of finite interacting particles is discussed from different points of view. It is shown that in volume averaging the introduction of a fictitious “interaction stress field”T I with special boundary conditions on the boundary of the averaging volume is needed. In ensemble averaging similar results are obtained by using a multipole expansion of the local stress and force fields. In the appropriate limiting cases, the obtained results are shown to be consistent with the results of kinetic theories of polymer solutions. Paper, presented at the First Conference of European Rheologists at Graz, April 14 – 16, 1982.  相似文献   

18.
After recalling the constitutive equations of finite strain poroelasticity formulated at the macroscopic level, we adopt a microscopic point of view which consists of describing the fluid-saturated porous medium at a space scale on which the fluid and solid phases are geometrically distinct. The constitutive equations of poroelasticity are recovered from the analysis conducted on a representative elementary volume of porous material open to fluid mass exchange. The procedure relies upon the solution of a boundary value problem defined on the solid domain of the representative volume undergoing large elastic strains. The macroscopic potential, computed as the integral of the free energy density over the solid domain, is shown to depend on the macroscopic deformation gradient and the porous space volume as relevant variables. The corresponding stress-type variables obtained through the differentiation of this potential turn out to be the macroscopic Boussinesq stress tensor and the pore pressure. Furthermore, such a procedure makes it possible to establish the necessary and sufficient conditions to ensure the validity of an ‘effective stress’ formulation of the constitutive equations of finite strain poroelasticity. Such conditions are notably satisfied in the important case of an incompressible solid matrix.  相似文献   

19.
Taylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term that accounts for the eflect of averaging the distribution coefficient over the volume of a unit element. Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions agreed reasonably with the results of numerical computations using particle tracking techniques.  相似文献   

20.
Wave propagation in fractured porous media   总被引:3,自引:0,他引:3  
A theory of wave propagation in fractured porous media is presented based on the double-porosity concept. The macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations. In microscale, the grains are assumed to be linearly elastic and the fluids are Newtonian. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the validity of Darcy's law in fractured porous media. The macroscopic constitutive relations of elastic porous media saturated by one or two fluids and saturated fractured porous media can be obtained from the constitutive relations developed in the paper. In the simplest case, the final set of governing equations reduce to Biot's equations containing the same parameters as of Biot and Willis.Now at Izmir Institute of Technology, Anafartalar Cad. 904, Basmane 35230, Izmir, Turkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号