首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A self-assembled monolayer of dodecanethiol is grown onto (111) oriented gold by vacuum phase deposition and studied by ultrahigh vacuum scanning tunneling microscopy (STM). The films consist of domains that exhibit the c(4 x 2) over-structure of the hexagonal (square root of 3 x square root of 3)R30 of alkanethiols on gold. The domain size is only limited by the terrace size of the underlying gold. By higher resolution scans a new phase of the c(4 x 2) structure consisting of four inequivalent molecules that display different heights in the STM images is discovered.  相似文献   

2.
用于扫描探针显微镜研究的原子级平整金基底的制备   总被引:1,自引:0,他引:1  
报导了一种用于扫描深外显微镜(SPM)研究的原子级平整全基底的制备方法.采用这种方法,得到了25um2范围内,膜的平均粗糙度小平0.4nm的原子级平整基底,并且得到金以(111)面取向在云母表面沉积的实验证据,同时使用电化学循环伏安法和X光电子能谱对这种膜的自组装性能进行了考察.  相似文献   

3.
金纳米粒子在平整硅基表面上的组装   总被引:23,自引:1,他引:22  
采用水相硅烷化方法,将3-氨基丙基-三甲氧基硅烷(APS)组装在湿化学法处理的单晶硅表面上。接触角、原子力显微镜(AFM)、X射线光电子能谱(XPS)表征结果显示得到了平整均匀的具有氨基表面的自组装膜。SEM观察表明,16nm的金纳米粒子可以在上述氨基表面上形成均匀的亚单层排布,得到了具有Au纳米粒子/APS/Si形成的纳米复合结构,进一步的处理可以使金纳米粒子在表面上的排列由随机趋于有序化。  相似文献   

4.
We report the synthesis and spectroscopic characterization of nanohybrid structures consisting of an azobenzene compound grafted on the surface of zinc oxide nanoparticles. Characteristic bathochromic shifts indicate that the azobenzene photochromic molecules self-assemble onto the surface of the nanocrystals. The extent of packing is dependent on the shape of the nanoparticle. ZnO nanorods, with flat facets, enable a tighter organization of the molecules in the self-assembled monolayer than in the case of nanodots that display a more curvated shape. Consistently, the efficiency of photochromic switching of the self-assembled monolayer on ZnO nanoparticles is also shown to be strongly affected by nanoparticle shape.  相似文献   

5.
金纳米粒子组装结构中的表面重组现象   总被引:1,自引:0,他引:1  
以纳米粒子为基本结构单元构筑的各种二维或三维超晶格结构受到了广泛的重视[1].人们的兴趣一方面来源于在纳米尺度上控制材料结构 ,另一方面则因为组织化的纳米材料或结构具有独特的性质 ,以期在非线性光学、纳米电子学等前沿领域得到应用[2].当前研究最多的结构形式是固体表面上的纳米粒子阵列或单层薄膜 ,通常是胶体粒子靠某种特殊相互作用吸附或沉积在固体表面上(亦称为“纳米粒子在表面上的组装[3]”) ,因此对纳米粒子及固体表面进行功能化的修饰 ,从而控制纳米粒子在表面上的排列和聚集状态 ,是制备这类复合结构的核心问…  相似文献   

6.
ESR spectroscopy has been used to study the interaction of para-pentylbenzyl hydroxyalkyl nitroxide with the monolayer of water-soluble protected gold clusters having a core diameter ranging from 1.6 to 5.3 nm. The solubilization of the nitroxide probe in the more hydrophobic environment of the monolayer strongly depends on the size of the gold core. In particular, the partition equilibrium constant increases as the nanoparticle diameter decreases. These results have been attributed to the different packing of the chains in the monolayer resulting from the different radius of curvature of the investigated nanoparticles. This represents, to the best of our knowledge, the first report demonstrating that the core size of metallic nanoparticles affects the solvating properties of the protective organic monolayer.  相似文献   

7.
We demonstrate a new type of Au{111} substrate that is both atomically flat and optically transparent, which consists of solution-grown flat gold nanoparticles (FGNPs) deposited on indium tin oxide (ITO)-coated glass. We show that FGNPs are atomically flat single-crystal plates with large {111} faces that expose only 2-4 atomic layers. These FGNPs are excellent platforms for alkanethiol self-assembled monolayers (SAMs) and for high-resolution scanning tunneling microscopy (STM). Our supported FGNPs are also low-cost Au{111} substrates, employing only basic wet chemical techniques in preparation. This approach should be broadly applicable to other types of substrates for scanning probe microscopies.  相似文献   

8.
A series of polymer-coated Au nanoparticles have been prepared using the "grafting-to" approach. Thiol-terminated polystyrene and poly(ethylene oxide) ligands are found to form dense brushes on the faceted gold nanoparticle surfaces. Depending on the polymer, the ligand grafting densities on the gold nanoparticles are 1.2- to 23.5-fold greater than those available via self-assembled monolayer formation of the corresponding two-dimensional gold surfaces.  相似文献   

9.
Recently we have combined infrared spectroscopy and atomic resolution scanning tunneling microscopy (STM) to probe the local structure and intermolecular arrangement of molecules within thin films. IR spectroscopy provides spatially averaged information about orientation of the molecules with respect to the surface and about intermolecular arrangement within the crystallographic unit cell. STM data yields a local picture of molecular packing within the film. The requirements of an atomically flat (over distances of hundreds of angstroms) conducting substrate for the STM are fulfilled by an epitaxially grown film of gold on a cleaved mica substrate which also provides a good infrared reflective surface, enabling IR and STM measurements on identical samples. Systems investigated include Langmuir-Blodgett films of cadmium arachidate and self-assembled films of octadecyltrichlorosilane.  相似文献   

10.
The dependence of supramolecular structure on fractional molecular coverage has been investigated for acridine-9-carboxylic acid (ACA) and the C(60):ACA binary molecular system. The coverage-dependent phase diagram for ACA is first determined from room-temperature STM imaging. At low molecular coverages (theta < 0.4 ML, ML = monolayer), ACA forms a 2-D gas phase. Ordered ACA structures appear with increasing coverage: first a chain structure composed of ACA molecules linked by consecutive O-H...N hydrogen bonds (theta > 0.4 ML), then a dimer structure composed of ACA dimers linked by paired carboxyl-carboxyl hydrogen bonds (theta approximately equal to 1.0 ML). Structures of the C(60):ACA binary system depend on the coverage of predeposited ACA. At intermediate (0.4 ML approximately 0.8 ML) ACA coverages, C(60) deposition results in a hexagonal cooperative structure with the C(60) periodicity nearly 3 times that of the normal C(60) 2-D packing of 1 nm and exists in enantiopure domains. At higher ACA coverages, a C(60) quasi-chain structure is formed in which parallel C(60) chains are spaced by ACA dimer domains. The mechanistic role of the initial ACA phase in the formation of C(60):ACA supramolecular structures is described. Chemically intuitive molecular packing models are presented based on the observed STM images.  相似文献   

11.
The self-assembled monolayers (SAMs) of normal alkanes (n-C(n)H(2n+2)) with different carbon chain lengths (n=14-38) in the interfaces between alkane solutions (or liquids), and the reconstructed Au (111) surfaces have been systematically studied by means of scanning tunneling microscopy (STM). In contrast to previous studies, which concluded that some n-alkanes (n=18-26) can not form well-ordered structures on Au (111) surfaces, we observed SAM formations for all these n-alkanes without any exceptions. We find that gold reconstruction plays a critical role in the SAM formation. The alkane monolayers adopt a lamellar structure in which the alkane molecules are packed side-by-side, to form commensurate structures with respect to the reconstructed Au (111) surfaces. The carbon skeletons are found to lie flat on the surfaces, which is consistent with the infrared spectroscopic studies. Interestingly, we find that two-dimensional chiral lamellar structures form for alkanes with an even carbon number due to the specific packing of alkane molecules in a tilted lamella. Furthermore, we find that the orientation of alkane molecules deviates from the exact [011] direction, because of the intermolecular interactions among the terminal methyl groups of neighboring lamellae; this results in differences of molecular orientation between mirror structures of adjacent zigzag alkane lamellae. Structural models have been proposed, that shed new light on monolayer formation.  相似文献   

12.
The assembly of nanoparticles into large, two-dimensional structures provides a route for the exploration of collective phenomena among mesoscopic building blocks. We characterize the structure of Langmuir monolayers of dodecanethiol-ligated gold nanoparticles with in situ optical microscopy and X-ray scattering. The interparticle spacing increases with thiol concentration and does not depend on surface pressure. The correlation lengths of the Langmuir monolayer crystalline domains are on the order of five to six particle diameters. Further compression of the monolayers causes wrinkling; however, we find that wrinkled monolayers with excess thiol can relax to an unwrinkled state following a reduction of surface pressure. A theoretical model based on van der Waals attraction and tunable steric repulsion is adopted to explain this reversibility.  相似文献   

13.
The molecular arrangement and chirality of the self-assembled arachidic anhydride monolayer on graphite were investigated using scanning tunneling microscopy (STM). This molecule has two identical alkyl chains, linked by an anhydride group in the middle. In its extended form, one alkyl chain is shifted, with respect to the other, along the molecular backbone. Upon adsorption on graphite, this achiral anhydride spontaneously forms two types of homogeneous domains (denoted as m and m') with mirror symmetry. The angle from the molecular chain to the row-packing direction is 98.0 degrees +/- 0.5 degrees and 82.0 degrees +/- 0.5 degrees for domains m and m', respectively. Domain m is the mirror image of m'. The molecular arrangement of this self-assembled monolayer shows that domains m and m' are two-dimensional enantiomers with opposite chiralities. This new molecular packing motif is confirmed by line-profile analyses along the molecule-chain and the row-packing directions. This finding demonstrates the spontaneous formation of highly ordered homogeneous enantiomorphous domains on graphite resulting only from weak van der Waals forces between the achiral arachidic anhydride molecules.  相似文献   

14.
We have formed the cholesterol monolayer and multilayer LB films on the self-assembled monolayers of 2-naphthalenethiol (2-NT) and thiophenol (TP) and studied the electrochemical barrier properties of these composite films using cyclic voltammetry and electrochemical impedance spectroscopy. We have also characterized the cholesterol monolayer film using grazing angle FTIR, scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Cholesterol has a long hydrophobic steroid chain, which makes it a suitable candidate to assemble on the hydrophobic surfaces. We find that the highly hydrophobic surface formed by the self-assembled monolayers (SAM) of 2-NT and TP act as effective platforms for the fabrication of cholesterol monolayer and multilayer films. The STM studies show that the cholesterol monolayer films on 2-NT form striped patterns with a separation of 1.0 nm between them. The area per cholesterol molecule is observed to be 0.64 nm2 with a tilt angle of about 28.96 degrees from the surface normal. The electrochemical studies show a large increase in charge transfer resistance and lowering of interfacial capacitance due to the formation of the LB film of cholesterol. We have compared the behavior of this system with that of cholesterol monolayer and multilayers formed on the self-assembled monolayer of thiophenol.  相似文献   

15.
The modification of a surface at the molecular level with precise control of the building blocks generates an integrated molecular system. This field has progressed rapidly in recent years through the use of self-assembled monolayer (SAM) interfaces. Recent developments on surface-initiated chemical reactions, functionalization, and graft polymerization on SAM interfaces are emphasized in the present review. A number of surface modifications by grafting are reviewed. The grafting of polyaniline on a glass surface, previously modified with a silane self-assembled monolayer (SAM), is examined in detail for both planar and 3-D systems, such as fibers, nanoparticles, and even polymer patterned surfaces. We also discuss the graft polymerization of water-soluble polymers on the surface of silicon nanoparticles, which generate stable aqueous colloidal solutions and have numerous applications. Finally, we compare and review some surface-modification techniques on the surfaces of polymers, such as two-solvent entrapment, polymer blending, and chemical grafting, which improve their biocompatibility.  相似文献   

16.
I Markovich  D Mandler 《The Analyst》2001,126(11):1850-1856
A new approach for designing a voltammetric selective electrode is presented. The approach is based on the formation of a disorganised inert self-assembled monolayer (SAM), in which an amphiphilic molecule is incorporated. The latter serves as the selectivity factor, which extracts the analyte. The purpose of these experiments is to study the parameters that affect the capability of a monolayer to host amphiphiles. As model systems we focused on the incorporation of simple amphiphilic molecules (quaternary alkyl ammonium salts), electroactive amphiphiles (dialkylviologens) and a macrocycle ligand (tetramethylcyclam) into octadecyl silane monolayers formed on indium tin oxide (ITO) and purposely made disorganised alkanethiols on gold. We find that basically, the incorporation of amphiphiles into a hydrophobic inert SAM resembles a reversed stationary phase in liquid chromatography and this configuration can be used for designing selective electrodes.  相似文献   

17.
We have investigated the surface ordering of a synthetic, asymmetric, fan-shaped dendrimer containing a carboxyl core and perfluorinated tails which was obtained by the esterification of the intermediary. X-ray diffraction patterns and transmission electron microscopy (TEM) images show the molecules self-assemble into a hexagonal, cylindrical mesophase. Surface pressure-area isotherms and Brewster angle microscopy measurements show the molecule forms a stable monolayer at the air-water interface with a single phase transition. As a condensed monolayer, the perfluorinated tails are well-packed with hexagonal symmetry with (10) spacing of approximately 0.5 nm from molecular-scale atomic force microscopy (AFM) images. Such dense molecular-scale packing has not been observed in other dendritic molecules thus far. Compared to the case of conventional dendritic molecules with alkyl tails, these molecules occupy a much smaller molecular area due to the strong microphase separation between the carboxylic core and perfluorinated tails at the air-water interface. After monolayer collapse, the irregular islands with terrace morphology are observed in contrast with conventional alkyl-terminated self-assembled dendritic molecules where irregular islands do not appear. The interfacial and internal structure of every terrace shows planar columnar morphology from AFM and TEM imaging. From these results, we discuss the stability of perfluorinated, self-assembled dendrimers on water, as well as how to generate planar morphology on a hydrophilic surface.  相似文献   

18.
A comparative investigation of the self-assembled monolayers of diphenyl disulfide (DDS), diphenyl diselenide (DDSe), and naphthalene disulfide (NDS) on polycrystalline gold films using STM, QCM, and electrochemical techniques is presented. The geometric constraint imposed by the rigid naphthalene ring for NDS inhibits the cleavage of the S-S bond, thus adversely affecting the monolayer organization and stability relative to the monolayers formed with DDS and DDSe. A comparative analysis using techniques like cyclic voltammetry and quartz-crystal microbalance indicates that, for DDS, the facile cleavage of the S-S bond leads to strong binding of the adsorbate molecules at the preferred surface sites, resulting in a rather well-organized self-assembled structure. The STM pattern of NDS reveals a periodic domain (i.e., less than 10 nm in size) while no such small domains are seen in the case of DDS and DDSe due to the orientational flexibility of the rings. Copyright 2001 Academic Press.  相似文献   

19.
We present a simple, novel procedure to selectively deposit gold nanoparticles using pure water. It enables patterning of nanoparticle monolayers with a remarkably high degree of selectivity on flat as well as microstructured oxide surfaces. We demonstrate that water molecules form a thin "capping" layer on exposed thiol molecules within the mercaptan self-assembled layer. This reversible capping of water molecules locally "deactivates" the thiol groups, therewith inhibiting the binding of metallic gold nanoparticles to these specific areas. This amazing role of water molecules can be used as a tool to pattern flat as well as structured surfaces with gold nanoparticles.  相似文献   

20.
Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号