首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow-core photonic-crystal fibers (PCFs) provide soliton delivery and frequency shifting of 2.8 MW femtosecond pulses with an input central wavelength of 618 nm. The frequency-shifted megawatt soliton output of the hollow PCF is used as a high-peak-power Stokes field for coherent anti-Stokes Raman scattering (CARS) microspectroscopy, providing a dynamic range of nearly four decades for anti-Stokes signal detection, thus enabling time-resolved CARS studies of ultrafast relaxation processes on time scales from tens of femtoseconds up to tens of picoseconds.  相似文献   

2.
We demonstrate a new approach to CARS spectroscopy by efficiently synthesizing synchronized narrow-bandwidth (less than 10 cm−1) pump and Stokes pulses (frequency difference continuously tunable upto ≈3000 cm−1) based on spectral compression together with second harmonic generation (in periodically-poled nonlinear crystals) of femtosecond pulses emitted by a single compact Er-fibre oscillator. For a far better signal to non-resonant background contrast, interferometric CARS (I-CARS) is demonstrated and CARS signal enhancement upto three orders of magnitude is achieved by constructive interference with an auxiliary local oscillator at anti-Stokes field, also synthesized by spectral compression of pulses emitted from the same fibre oscillator.  相似文献   

3.
K. Tada  N. Karasawa   《Optics Communications》2009,282(19):3948-3952
Pulse trains of fundamental soliton pulses with different center wavelengths and delay times from a photonic crystal fiber were generated and used as Stokes optical pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy. The pulse trains were created by shaping optical pulses with a pulse shaper and their waveforms were measured by a cross-correlation frequency-resolved optical gating method. By the use of pulse trains, the time required for obtaining broadband CARS signals was reduced to be about one third compared with our previous study without using pulse trains. With this setup, broadband CARS signals between 500 and 3100 cm−1 of a single polystyrene bead sample have been measured and the most of the Raman peaks in this frequency range of samples have been observed clearly.  相似文献   

4.
Coherent anti-Stokes Raman scattering (CARS) microspectroscopy of silicon components is demonstrated with pump and probe fields delivered by a mode-locked Cr:forsterite laser and the frequency-shifted soliton output of a photonic-crystal fiber as a Stokes field. CARS microspectroscopy is shown to allow a visualization of microscale features and defects on the surface of silicon wafers, offering much promise for online diagnostics of electronic and photonic silicon chip components.  相似文献   

5.
Chirped-probe-pulse (CPP) femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for single-laser-shot temperature measurements in flames is discussed. In CPP fs CARS, a giant Raman coherence is created in the medium by impulsive pump-Stokes excitation, and the temperature-dependent temporal decay of this initial coherence is mapped into the frequency of the CARS signal using a CPP. The theory of the CPP fs CARS technique is presented. A computer code has been developed to calculate theoretical CPP fs CARS spectra. The input parameters for the calculation of the theoretical spectra include the temperature, probe time delay, ratio of the resonant and nonresonant susceptibilities, and parameters for characterizing the pump, Stokes and probe pulses. The parameters for characterizing the pump, Stokes and probe pulses are determined from the best fit of theoretical spectra to experimental spectra acquired from calibration flames at a known temperature. For spectra acquired in subsequent measurements, these laser parameters are fixed and temperature is determined as one of the fit parameters from the best fit of theoretical spectra to experimental spectra. For single-laser-shot CPP fs CARS temperature measurements performed in steady, near-adiabatic flames, the best-fit temperature distribution width is typically less than 1.5% of the mean temperature. The mean temperature is accurate to within approximately 3% with respect to the adiabatic flame temperature. The most significant limitation on temperature measurement accuracy is associated with the evaluation of the theoretical laser parameters. Significant improvements in the temperature measurement accuracy are expected once monitoring equipment capable of characterizing the spectrum and phase of each laser pulse is incorporated in the experiments.  相似文献   

6.
We report all-UV coherent anti-Stokes Raman scattering (CARS) in calcite with 250-280 nm pump, Stokes, probe, and anti-Stokes light. UV CARS efficiency is approximately 7x higher than for comparable scattering in the visible, 480-540 nm. Time-resolved UV CARS reveals lengthening of the dephasing time of 1086 cm(-1) CO3(2-) internal vibrations from 4 to 7 ps with increasing vibrational excitation, consistent with a phonon depletion model.  相似文献   

7.
Polarization coherent anti-Stokes Raman scattering microscopy   总被引:3,自引:0,他引:3  
Cheng JX  Book LD  Xie XS 《Optics letters》2001,26(17):1341-1343
We report polarization coherent anti-Stokes Raman scattering (P-CARS) microscopy that allows vibrational imaging with high sensitivity and spectral selectivity. The nonresonant background signals from both Raman scatterers and the solvent are efficiently suppressed in P-CARS microscopy. We demonstrate P-CARS imaging of unstained cells based on the contrast of the protein amide I band.  相似文献   

8.
We report a novel Fourier-transform-based implementation of coherent anti-Stokes Raman scattering (CARS) microscopy. The method employs a single femtosecond laser source and a Michelson interferometer to create two pulse replicas that are fed into a scanning multiphoton microscope. By varying the time delay between the pulses, we time-resolve the CARS signal, permitting easy removal of the nonresonant background while providing high resolution, spectrally resolved images of CARS modes over the laser bandwidth (approximately 1500 cm(-1)). We demonstrate the method by imaging polystyrene beads in solvent.  相似文献   

9.
张诗按  张晖  王祖赓  孙真荣 《中国物理 B》2010,19(4):43201-043201
Femtosecond coherent anti-Stokes Raman scattering (CARS) suffers from poor selectivity between neighbouring Raman levels due to the large bandwidth of the femtosecond pulses. This paper provides a new method to realize the selective excitation and suppression of femtosecond CARS by manipulating both the probe and pump (or Stokes) spectra. These theoretical results indicate that the CARS signals between neighbouring Raman levels are differentiated from their indistinguishable femtosecond CARS spectra by tailoring the probe spectrum, and then their selective excitation and suppression can be realized by supplementally manipulating the pump (or Stokes) spectrum with the $\pi $ spectral phase step.  相似文献   

10.
江俊峰  黄灿  刘琨  张永宁  王双  张学智  马喆  陈文杰  于哲  刘铁根 《物理学报》2017,66(20):204207-204207
进行了基于光纤预啁啾和自相位调制的多模/单模组合式全光纤啁啾谱压缩研究.提出利用多模光纤模式估计群速度色散均值的方法,并将该估计值作为啁啾参量分析的计算参数,仿真计算了50/125μm折射率渐变多模光纤的群速度色散均值及其与单模光纤在不同长度比值下的光谱压缩效果.采用三种折射率渐变多模光纤进行实验,对比分析了折射率渐变多模光纤的芯径大小及其与单模光纤的长度比值对光谱压缩效果的影响.实验结果表明使用50/125μm折射率渐变多模光纤获得光谱最大压缩比为5.796,谱宽为2.243 nm,与理论仿真一致;使用105/125μm折射率渐变多模光纤,可进一步提高压缩比至152.941,输出谱宽为0.085 nm的光脉冲.将此脉冲用于相干反斯托克斯拉曼散射光谱探测,理论光谱分辨率可达1.386 cm~(-1).  相似文献   

11.
相干反斯托克斯拉曼散射显微成像技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘双龙  刘伟  陈丹妮  屈军乐  牛憨笨 《物理学报》2016,65(6):64204-064204
基于全量子理论对相干反斯托克斯拉曼散射(CARS)过程进行了分析, 在此基础上搭建了单频CARS显微成像系统, 获得了不同尺寸聚苯乙烯微球高对比度的CARS显微图像. 为了标定成像系统的空间分辨率, 采用逐点扫描方式对直径为110 nm聚苯乙烯微球成像, 从而重构出系统的点扩展函数. 结果表明: 该CARS显微成像系统的横向空间分辨率约为600 nm, 而由阿贝衍射极限决定的理论空间分辨率约为300 nm. 分析了导致分辨率降低的原因, 并提出了解决方案. 为实现纳米分辨的CARS显微成像打下了坚实的基础.  相似文献   

12.
Coherent supercontinuum generated from a photonic crystal fiber is applied to near-infrared coherent anti-Stokes Raman scattering (NIR-CARS) microscopy. A clear CARS image of polystyrene beads has been successfully obtained at a wavenumber difference resonant with the CH-stretching vibrational mode. PACS 87.64.Je; 39.30.+w; 87.64.Vv  相似文献   

13.
We have developed and tested a wide-field coherent anti-Stokes Raman scattering (CARS) microscopy technique, which provides the simultaneous imaging of an extended illuminated area without scanning. This method is based on the non-phase-matching illumination of a sample and imaging of a CARS signal with a CCD camera using conventional microscope optics. We have identified a set of conditions on the illumination and imaging optics, as well as on sample preparation. Imaging of test objects proved high spatial resolution and chemical selectivity of this technique.  相似文献   

14.
A new scheme of chirped-pulse femtosecond coherent anti-Stokes Raman scattering spectroscopy is proposed and experimentally implemented. A theory of this modification of coherent nonlinear spectroscopy is developed. We use this approach to show that a linear time-frequency mapping defined by linearly chirped pulses allows the spectra of nonlinear response of a medium to be measured by varying the delay time between the pump pulses. Microstructure fibers with a special dispersion profile are at the heart of the experimental implementation of this technique. Such fibers are ideally suited for the generation of frequency-tunable pulses with a smooth envelope and a controlled chirp. We present the results of experimental characterization of the envelope, spectrum, and chirp of anti-Stokes pulses generated in microstructure fibers by femtosecond Cr:forsterite-laser pulses. These frequency-tunable anti-Stokes pulses produced and shaped in microstructure fibers are then employed for coherent anti-Stokes Raman scattering spectroscopy of toluene solution.  相似文献   

15.
16.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtosecond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.  相似文献   

17.
对自身不发荧光且不便于荧光标记的化学或生物学样品,集相干反斯托克斯拉曼散射与激光共焦扫描显微镜于一身的相干反斯托克斯拉曼散射显微镜是一种好的选择。因为相干反斯托克斯拉曼散射是一种非线性过程,相干反斯托克斯拉曼散射显微镜的显微成像特性与一般的共焦显微镜非常不同。首先计算了焦点附近相干反斯托克斯拉曼散射激发场的偏振分布,然后,利用格林函数方法,得到了以赫兹偶极子为源的波动方程的精确解,发现对于不同的成像配置和样品形状,像场的相干反斯托克斯拉曼散射场分布非常不同,因此传统的显微镜成像表征方式(如点扩展函数)将不再能描述相干反斯托克斯拉曼散射显微镜的成像特性。  相似文献   

18.
Raman lasing of a two-phonon Raman band in the anti-Stokes side is demonstrated. Two femtosecond light pulses with identical wavelengths are irradiated onto a SrTiO3 crystal in a cross-beam configuration. Under low excitation power, several wave-mixing signals with identical wavelengths are emitted. When the power exceeds a critical value, cascaded coherent anti-Stokes Raman scattering (CARS) signals are emitted, the frequency step of which is coincident with that of the strongest two-phonon Raman band of 2TO2.  相似文献   

19.
We present a photonic crystal fiber (PCF)-based light source for generating tunable excitation pulses (pump and Stokes) that are applicable to coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The laser employed is an unamplified Ti:sapphire femtosecond laser oscillator. The CARS pump pulse is generated by spectral compression of a laser pulse in a PCF. The Stokes pulse is generated by redshifting a laser pulse in a PCF through the soliton self-frequency shift. This setup allows for probing up to 4000 cm(-1) with a spectral resolution of approximately 25 cm(-1). We characterize the stability and robustness of CARS microspectroscopy employing this light source.  相似文献   

20.
Single-beam coherent anti-Stokes Raman-scattering (CARS) microspectroscopy achieves a complete CARS scheme with a femtosecond laser. Here, we introduce heterodyne detection in a simple experimental extension: the optical fields driving the CARS process and the local oscillator used for heterodyning are derived from a single beam of ultrashort laser pulses by pulse shaping. The heterodyne signal is amplified by more than 3 orders of magnitude and is linearly dependent on the concentration of Raman scatterers. This dramatically increases the sensitivity of chemically selective detection at microscopic resolution while maintaining the simplicity of the single-beam setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号