首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyse the effects of atom–atom collisions on a collective laser cooling scheme. We derive a quantum master equation which describes the laser cooling in presence of atom–atom collisions in the weak-condensation regime. Using such equation, we perform Monte Carlo simulations of the population dynamics in one and three dimensions. We observe that the ground-state laser-induced condensation is maintained in the presence of collisions. Laser cooling causes a transition from a Bose–Einstein distribution describing collisionally induced equilibrium, to a distribution with an effective zero temperature. We analyse also the effects of atom–atom collisions on the cooling into an excited state of the trap. Received: 18 June 1999 / Revised version: 24 September 1999 / Published online: 10 November 1999  相似文献   

2.
Using optical dipole forces we have realized controlled transport of a single or any desired small number of neutral atoms over a distance of a centimeter with sub-micrometer precision. A standing wave dipole trap is loaded with a prescribed number of cesium atoms from a magneto-optical trap. Mutual detuning of the counter-propagating laser beams moves the interference pattern, allowing us to accelerate and stop the atoms at preselected points along the standing wave. The transportation efficiency is close to 100%. This optical ‘single-atom conveyor belt’ represents a versatile tool for future experiments requiring deterministic delivery of a prescribed number of atoms on demand. Received: 6 July 2001 / Published online: 23 November 2001  相似文献   

3.
Received: 30 May 1997/Revised version: 26 August 1997  相似文献   

4.
5.
Laser cooling in a CO2-laser optical lattice   总被引:1,自引:0,他引:1  
Received: 19 June 1998  相似文献   

6.
We report on high-resolution spectroscopy with two different samples of calcium atoms, in a laser-cooled and deflected beam and in a magneto-optical trap. The atomic beam was excited by spatially separated laser fields. For spectroscopy with stored atoms in a magneto-optical trap we used a multiple-pulse excitation scheme. The resolution as low as 2.5 kHz was limited by residual frequency fluctuations of our dye-laser spectrometer. The results should allow to establish a frequency standard with a relative uncertainty below 10–14.  相似文献   

7.
8.
We have theoretically and experimentally investigated the focusing properties of a detuned pulsed standing wave onto a beam of neutral atoms. In close analogy to the continuous-wave situation the dipole force leads to a periodic focusing of atoms with a period of λ/2, provided an adiabatic condition is fulfilled. Pulsed laser light is conveniently converted to short wavelengths and hence offers advantages in the application of atom lithography with elements of technological interest having blue or UV resonance lines. Received: 6 October 1999 / Revised version: 3 February 2000 / Published online: 5 April 2000  相似文献   

9.
We propose a novel scheme to form a 2D dark optical surface lattice (DOSL) for cold atoms on the surface of the dense flint glass by using two sets of blue-detuned evanescent wave interference fields and a blue-detuned evanescent wave field. In the 2D DOSL, cold atoms will be trapped in the vicinity of minimum intensity and suffered the minimal light shift as well as the lowest coherence loss. The total potential and trap-depth of the individual optical micro-trap in the 2D DOSL are high enough to trap cold atoms (T = 120 μK) released from the standard magneto-optical trap (MOT), and atoms trapped in the 2D DOSL can be cooled to several μK with the efficient intensity-gradient Sisyphus cooling. The lattice constant of the DOSL can be controllable by changing the incident angles of lights.  相似文献   

10.
Writing a superlattice with light forces   总被引:1,自引:0,他引:1  
In atom lithography the conventional roles played by light and matter are reversed. Instead of using a solid mask to pattern a light beam, a mask of light is used to pattern a beam of neutral atoms. In this paper we report the production of different chromium dot arrays with quadratic symmetry. The lattice period depends on the relative polarization and the phase of the two standing waves generating the light mask. A small angular misalignment of the laser beams breaks the high symmetry and a chromium superlattice is written, that is a continuous periodic change between two different quadratic lattices. The structures exhibit lines with a FWHM below 50 nm and clearly separated chromium dots with a FWHM below 70 nm. Received: 30 September 1999 / Revised version: 14 February 2000 / Published online: 5 April 2000  相似文献   

11.
A sequence of laser pulses is presented to implement a new kind of CNOT-gate in an linear arrangement of trapped ions. This type of quantum gate enables the designer of quantum algorithms to “send information into the phonon bus” controlled by the information stored in one of the ions. Some simulation results are given to show the dynamics of the system during the gate implementation. The simulation gives information about the leakage and the gate accuracy. Received: 11 July 2000 / Revised version: 20 October 2000 / Published online: 6 December 2000  相似文献   

12.
We examine in detail the theory of the intrinsic non-linearities in the dynamics of trapped ions due to the Coulomb interaction. In particular, the possibility of mode–mode coupling, which can be a source of decoherence in trapped ion quantum computation, or can be exploited for parametric down-conversion of phonons, is discussed and conditions under which such coupling is possible are derived. Received: 8 November 2002 / Published online: 26 March 2003 RID="*" ID="*"Permanent address: MIP, Université Pierre et Marie Curie and Département de Physique, école Normale Supérieure, 75005 Paris, France RID="**" ID="**"Corresponding author. Fax: +1-505/667-1931, E-mail: dfvj@lanl.gov  相似文献   

13.
01 * (doughnut) modes for atomic beam manipulation. A slow atomic beam is guided over up to 0.3 m and focused down to 6.5 μm radius. The doughnut mode is used as a strong mesoscopic dipole potential with vibrational level spacings up to the photon recoil energy. Polarization gradient cooling in this system generates a bimodal momentum distribution with a narrow component momentum width of 4 ?k. Received: 26 June 1998  相似文献   

14.
We have operated a magneto-optical trap and optical molasses for the laser cooling of cesium atoms on the basis of a five-beam laser configuration. For the magneto-optical trap two laser beams counterpropagate along the axis of a quadrupole trap and the remaining three beams propagate in the orthogonal plane at 120° to each other. The same optical configuration was used for the optical molasses. We have tested the efficiency in atom collection and the temperatures reached in both cooling processes. In comparison to previous results on a six-beam configuration, a lower number of atoms is collected, while comparable densities are realized. The atomic temperatures have been measured through a delayed shadow-image technique, where one of the running-wave cooling beams produces an absorptive image of the atoms on a camera. Received: 14 January 1999 / revised version: 23 June 1999 / Published online: 8 September 1999  相似文献   

15.
One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing- laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.8nm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.  相似文献   

16.
The laser cooling of atoms is a result of the combined effect of Doppler shift, light shift and polarization gradient. These are the phenomena which generally introduce frequency shift and uncertainty. However, they combine gainfully in realizing laser cooling and trapping of the atoms. In this paper we discuss the laser cooling of atoms in the presence of the squeezed light with the decay of atomic dipole moment into noisy quadrature. We show that the higher decay rate of the atomic dipole moment into the noisy quadrature, which leads to decrease in the signal to noise ratio, may contribute in realizing larger cooling force vis-à-vis with coherent laser light.  相似文献   

17.
We develop a mean-field approach to include dipole-dipole interactions and quantum statistics in the atomic dynamics in bright and dark optical lattices including the proper spatial potentials instead of a simple δ-approximation. For classical distinguishable particles the results are even quantitatively similar to the properly scaled δ-function model. As the dominant effect bright and dark lattices exhibit opposite shifts in the lattice band energies and differ in their localisation properties as a function of density. The spatial-dependent potential allows strong modifications also in dark lattices, but the main conclusions obtained in the δ-approximation turn out to be still valid. Interestingly, important quantitative differences from the δ-model can occur as far as the effect of statistics in concerned, especially for fermions. We study the quantum statistical effects as a function of detuning and lattice well depths and identify the case of lattices with deep wells and large detunings as the preferred parameter region to observe them. Received 24 November 1999 / revised version: 24 June 1999 / Published online: 8 September 1999  相似文献   

18.
High-resolution atomic channeling using velocity-controlled atoms may be able to overcome precision limitations of the conventional atom lithography. We have experimentally clarified the dependence of line width and contrast of atomic patterns in the channeling region on the velocity spread of the atomic source for the first time. Thermal or velocity-selected atomic beams prepared with a one-dimensional magneto-optical trap were employed as the atomic sources. We investigated the channeling characteristics by measuring the frequency shifts of the atomic absorption spectra in an intense standing wave light field. As a result, we can show that narrower line width and higher contrast atomic patterns are obtained as the velocity spread becomes narrower. An atomic pattern with an estimated line width of 57 nm was generated when the velocity spread of the atomic source was almost 50 m/s, that is, 1/6 that of the thermal beam. Received: 16 June 2001 / Published online: 7 November 2001  相似文献   

19.
Received: 6 August 1997/Revised version: 21 October 1997  相似文献   

20.
We demonstrate two schemes for the coherent excitation of Rydberg atoms in an ultracold gas of rubidium atoms employing the three-level ladder system 5S1/2-5P3/2-n?j. In the first approach rapid adiabatic passage with pulsed laser fields yields Rydberg excitation probabilities of 90% in the center of the laser focus. In a second experiment two-photon Rydberg excitation with continuous-wave fields is applied which results in Rabi oscillations between the ground and Rydberg state. The experiments represent a prerequisite for the control of interactions in ultracold Rydberg gases and the application of ultracold Rydberg gases for quantum information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号