首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The dynamics of the cyanide anion bound to sperm-whale myoglobin is investigated using atomistic simulations. With density-functional theory, a 2D potential energy surface for the cyanide-heme complex is calculated. Two deep minima with a stabilization energy of approximately 50 kcal/mol corresponding to two different binding orientations (Fe-CN and Fe-NC) of the ligand are found. The Fe-CN conformation is favored over Fe-NC by several kcal/mol. Mixed quantum mechanics/molecular mechanics calculations show that the binding orientation affects the bond strength of the ligand, with a significantly different bond length and a 25 cm-1 shift in the fundamental CN-frequency. For the molecular dynamics (MD) simulations, a 3-center fluctuating charge model for the Fe-CN unit is developed that captures polarization and ligand-metal charge transfer. Stability arguments based on the energetics around the active site and the CN- frequency shifts suggest that the Fe-CN conformation with epsilon-protonation of His epsilon 64 are most likely, which is in agreement with experiment. Both equilibrium and nonequilibrium MD simulations are carried out to investigate the relaxation time scale and possible relaxation pathways in bound MbCN. The nonequilibrium MD simulations with a vibrationally excited ligand reveal that vibrational relaxation takes place on a time scale of hundreds of picoseconds within the active site. This finding supports the hypothesis that the experimentally observed relaxation rate (3.6 ps) reflects the repopulation of the electronic ground state.  相似文献   

2.
3.
Molecular dynamics simulations have been performed to gain insights into the catalytic mechanism of the hydrolysis of epoxides to vicinal diols by soluble epoxide hydrolase (sEH). The binding of a substrate, 1S,2S-trans-methylstyrene oxide, was studied in two conformations in the active site of the enzyme. It was found that only one is likely to be found in the active enzyme. In the preferred conformation the phenyl group of the substrate is pi-sandwiched between two aromatic residues, Tyr381 and His523, whereas the other conformation is pi-stacked with only one aromatic residue, Trp334. Two simulations were carried out to 1 ns for each conformation to evaluate the protonation state of active site residue His523. It was found that a protonated histidine is essential for keeping the active site from being disrupted. Long time scale, 4 ns, molecular dynamics simulation was done for the structure with the most likely combination of binding conformation and protonation state of His523. Near Attack Conformers (NACs) are present 5.3% of the time and nucleophilic attack on either epoxide carbon atom, approximately 75% on C(1) and approximately 25% on C(2), is found. A maximum of one hydrogen bond between the epoxide oxygen and either of the active site tyrosines, Tyr465 and Tyr381, is present, in agreement with experimental mutagenesis results that reveal a slight loss in activity if one tyrosine is mutated and essential loss of all activity upon double mutation of the two tyrosines in question. It was found that a hydrogen bond from Tyr465 to the substrate oxygen is essential for controlling the regioselectivity of the reaction. Furthermore, a relationship between the presence of this hydrogen bond and the separation of reactants was found. Two groups of amino acid segments were identified each as moving collectively. Furthermore, an overall anti-correlation was found between the movements of these two individually collectively moving groups, made up by parts of the cap-region, including the two tyrosines, and the site of the catalytic triad, respectively. This overall anti-correlated collective domain motion is, perhaps, involved in the conversion of E.NAC to E.TS.  相似文献   

4.
His64 and His93 are the two well-known sites of heme binding in water-dissolved holo-myoglobin, with His93 being a proximal, strongly binding partner, while the distal His64 weakly coordinates to the heme through a small-molecule ligand, e.g., water or O2. The heme bonding scheme in a water-free environment is as yet unclear. Here we employed electron transfer dissociation tandem mass spectrometry to study the preferential attachment site of the ferri-heme (Fe3+) in electrospray-produced 12+, 14+, and 16+ holo-myoglobin ions. Contrary to expectations, in lower-charge complexes that should have a structure resembling that in solution, the heme seems to be preferentially attached to the “distal” histidine. In contrast, in the highest studied charge state, the “proximal” histidine is the site of preferential attachment; the 14+ charge state is an intermediate case. This surprising finding raises a question of heme coordination in proteins transferred to water-free environment, as well as the effect of the protonation sites on heme bonding.  相似文献   

5.
The structural origins of infrared absorptions of photodissociated CO in murine neuroglobin (Ngb) are determined by combining Fourier transform infrared (FTIR) spectroscopy and molecular dynamics (MD) simulations. Such an approach allows to identify and characterize both the different conformations of the Ngb active site and the transient ligand docking sites. To capture the influence of the protein environment on the spectroscopy and dynamics, experiments and simulations are carried out for the wild type protein and its F28L and F28W mutants. It is found that a voluminous side chain at position 28 divides site B into two subsites, B’ and B”. At low temperatures, CO in wt Ngb only migrates to site B’ from where it can rebind, and B” is not populated. The spectra of CO in site B’ for wt Ngb from simulations and experiments are very similar in spectral shift and shape. They both show doublets, red‐shifted with respect to gas‐phase CO and split by≈8 cm?1. The FTIR spectra of the F28L mutant show additional bands which are also found in the simulations and can be attributed to CO located in substate B”. The different bands are mainly related to different orientations of the His64 side chain with respect to the CO ligand. Large red‐shifts arise from strong interactions between the Histidine? NH and the CO oxygen. After dissociation from the heme iron, the CO ligand visits multiple docking sites. The locations of the primary docking site B and a secondary site C, which corresponds to the Mb Xe4 cavity, could be identified unambiguously. Finally, by comparing experiment and simulations it is also possible to identify protonation of its ε position (Hisε64 NgbCO) as the preferred heme‐bound conformation in the wild type protein with a signal at 1935 cm?1.  相似文献   

6.
We have used femtosecond IR spectroscopy to probe interconversion dynamics of ligand in the primary docking site of heme proteins under physiological conditions. The docking site, fashioned with highly conserved amino acid residues, modulates ligand-binding activity by mediating the passage of ligand to and from the active binding site. Ligands in two states of the docking site interconvert on the picosecond time scale, and the rates are about 4 times slower in hemoglobin than that in myoglobin. The accurate interconversion rates on the time scale readily accessible by MD simulations can be used to refine computer simulations, which could in turn provide a detailed mechanistic picture of ligand binding in heme proteins.  相似文献   

7.
Structural dynamics within the distal cavity of myoglobin protein is investigated using 2D‐IR and IR pump–probe spectroscopy of the N≡C stretch modes of heme‐bound thiocyanate and selenocyanate ions. Although myoglobin‐bound thiocyanate group shows a doublet in its IR absorption spectrum, no cross peaks originating from chemical exchange between the two components are observed in the time‐resolved 2D IR spectra within the experimental time window. Frequency–frequency correlation functions of the two studied anionic ligands are obtained by means of a few different analysis approaches; these functions were then used to elucidate the differences in structural fluctuation around ligand, ligand–protein interactions, and the degree of structural heterogeneity within the hydrophobic pocket of these myoglobin complexes.  相似文献   

8.
The IR signature of binding of formate to the heme a(3-)Cu(B) binuclear site of bovine cytochrome c oxidase has been obtained by perfusion ATR-FTIR spectroscopy. The data show unequivocally that formate binds in its anionic form despite its binding being electroneutral overall. The bound formate can be distinguished from free ligand by the binding-induced sharpening and downshifting of vibrational bands. Formate ligation also causes shifts of vibrational modes of heme a(3) and its substituents and perturbation of histidine residues. The association of the accompanying protonation change with a carboxylate or tyrosine can be ruled out and may involve a histidine metal ligand or, more likely, a simple displacement into the bulk phase of a hydroxide ligand to heme a(3) or CU(B), a reaction which would account for stoichiometric proton uptake and maintenance of net charge within the binuclear center domain.  相似文献   

9.
An application of the new sterically hindered electron-poor 2-(3,5-bis(trifluoromethyl)phenyl)-4-trifluoromethylpyridine [HC--N] (1) in the one-step high temperature cyclometalation by Ir(III)Cl3 in the presence of Ag(I)OC(O)CF3 resulted in the synthesis of tris-cyclometalated complexes [C--N]2Ir[C--C] (3) and [C--N]3Ir (5). A neutral silver cluster with a repeating unit of hexa-silver groups in an infinite chain of (2) was isolated from the above reaction as well. When this cyclometalation was carried out in trimethylphosphate at lower temperature, bis-cyclometalated derivatives [C--N]2Ir(mu-Cl)2Ir[CN]2 (6), [C--N]2Ir[eta2-(O(C((t)Bu))2CH] (7), and [C--N]2Ir(mu-O-P(OMe)2-O)2Ir[C--N]2 (8) were synthesized. According to X-ray analyses complex (3), while trivalent, contains four cyclometalated single Ir-C bonds. One of the Ir-C bonds, next to the nitrogen atom of the CC pyridinium ligand, was found to be the shortest to date (1.977(4) angstroms) for a single bond between iridium and carbon atoms. The coordination of the C--C ligand in (3) to iridium has a decidedly interesting bonding pattern and can be explained by various formulations. The first one is considering this ligand as a monoanionic chelating ligand, in which the second coordination site arises from a carbene or azomethine ylide. Overall the best single picture may be a dianionic ligand making two normal Ir-C bonds, in which the ligand just happens to contain a pyridinium function that compensates for one negative charge on the iridium. LEDs constructed with compounds (7) and (8) give blue-green emission with peak electroluminescent efficiency of 15 and 2 cd A(-1), respectively. An LED constructed with compound (5) gives a yellowish emission with peak electroluminescent efficiency of 5.5 cd A(-1).  相似文献   

10.
构建了鼠脑红蛋白(Mouse neuroglobin)的突变体F106L, 以探求近端残基对脑红蛋白血红素口袋结构的贡献. 通过溶液核磁共振方法研究了外来配体氰根离子与NgbF106L蛋白的结合作用, 结果显示, 此结合存在动力学过程, 并且NgbF106LCN 突变蛋白氰根络合物可以可逆地释放氰根离子, 并使原来的第6配体His64(E7)又结合回到血红素铁上. 研究结果揭示, G5(Phe106)残基对脑红蛋白血红素构象而言较为保守; QM/MM结构优化结果表明, 位于G5 和FG5的近端残基对蛋白结构稳定性具有重要作用, 并可调控外来配体与蛋白作用的配位平衡与热动力学性质.  相似文献   

11.
Spectrally resolved infrared stimulated vibrational echo experiments are used to measure the vibrational dephasing of a CO ligand bound to the heme cofactor in two mutated forms of the cytochrome c552 from Hydrogenobacter thermophilus. The first mutant (Ht-M61A) is characterized by a single mutation of Met61 to an Ala (Ht-M61A), while the second variant is doubly modified to have Gln64 replaced by an Asn in addition to the M61A mutation (Ht-M61A/Q64N). Multidimensional NMR experiments determined that the geometry of residue 64 in the two mutants is consistent with a non-hydrogen-bonding and hydrogen-bonding interaction with the CO ligand for Ht-M61A and Ht-M61A/Q64N, respectively. The vibrational echo experiments reveal that the shortest time scale vibrational dephasing of the CO is faster in the Ht-M61A/Q64N mutant than that in Ht-M61A. Longer time scale dynamics, measured as spectral diffusion, are unchanged by the Q64N modification. Frequency-frequency correlation functions (FFCFs) of the CO are extracted from the vibrational echo data to confirm that the dynamical difference induced by the Q64N mutation is primarily an increase in the fast (hundreds of femtoseconds) frequency fluctuations, while the slower (tens of picoseconds) dynamics are nearly unaffected. We conclude that the faster dynamics in Ht-M61A/Q64N are due to the location of Asn64, which is a hydrogen bond donor, above the heme-bound CO. A similar difference in CO ligand dynamics has been observed in the comparison of the CO derivative of myoglobin (MbCO) and its H64V variant, which is caused by the difference in axial residue interactions with the CO ligand. The results suggest a general trend for rapid ligand vibrational dynamics in the presence of a hydrogen bond donor.  相似文献   

12.
We present molecular dynamics simulations of the photodissociated state of MbNO performed at 300 K using a fluctuating charge model for the nitric oxide (NO) ligand. After dissociation, NO is observed to remain mainly in the centre of the distal haem pocket, although some movement towards the primary docking site and the xenon-4 pocket can be seen. We calculate the NO infrared spectrum for the photodissociated ligand within the haem pocket and find a narrow peak in the range 1915-1922 cm(-1). The resulting blue shift of 1 to 8 cm(-1) compared to gas-phase NO is much smaller than the red shifts calculated and observed for carbon monoxide (CO) in Mb. A small splitting, due to NO in the xenon-4 pocket, is also observed. At lower temperatures, the spectra and conformational space explored by the ligand remain largely unchanged, but the electrostatic interactions with residue His64 become increasingly significant in determining the details of the ligand orientation within the distal haem pocket. The investigation of the effect of the L29F mutation reveals significant differences between the behaviour of NO and that of CO, and suggests a coupling between the ligand and the protein dynamics due to the different ligand dipole moments.  相似文献   

13.
Ab initio molecular dynamics (AIMD) calculations, based on the Car-Parrinello method, have been carried out for three models of heme c that is present in cytochrome c. Both the reduced (Fe(II)) and oxidized (Fe(III)) forms have been analyzed. The simplest models (1R and 1O, respectively) consist of a unsubstituted porphyrin (with no side chains) and two axially coordinated imidazole and ethylmethylthioether ligands. Density functional theory optimizations of these models confirm the basic electronic features and are the starting point for building more complex derivatives. AIMD simulations were performed after reaching the thermal stability at T = 300 K. The evolution of the Fe-L(ax) bond strengths is examined together with the relative rotations of the imidazole and methionine about the axial vector, which appear rather independent from each other. The next models (2R and 2O) contain side chains at the heme to better simulate the actual active site. It is observed that two adjacent propionate groups induce some important effects. The axial Fe-Sdelta bond is only weakened in 2R but is definitely cleaved in the oxidized species 2O. Also the mobility of the Im ligand seems to be reduced by the formation of a strong hydrogen bond that involves the Im Ndelta1-Hdelta1 bond and one carboxylate group. In 2O the interaction becomes so strong that a proton transfer occurs and the propionic acid is formed. Finally, the models 3 include a free N-methyl-acetamide molecule to mimic a portion of the protein backbone. This influences the orientation of carboxylate groups and limits the amount of their hydrogen bonding with the Im ligand. Residual electrostatic interactions are maintained, which are still able to modulate the dissociation of the methionine from the heme.  相似文献   

14.
Spectrally resolved infrared stimulated vibrational echo data were obtained for sperm whale carbonmonoxymyoglobin (MbCO) at 300 K. The measured dephasing dynamics of the CO ligand are in agreement with dephasing dynamics calculated with molecular dynamics (MD) simulations for MbCO with the residue histidine-64 (His64) having its imidazole epsilon nitrogen protonated (N(epsilon)-H). The two conformational substate structures B(epsilon) and R(epsilon) observed in the MD simulations are assigned to the spectroscopic A(1) and A(3) conformational substates of MbCO, respectively, based on the agreement between the experimentally measured and calculated dephasing dynamics for these substates. In the A(1) substate, the N(epsilon)-H proton and N(delta) of His64 are approximately equidistant from the CO ligand, while in the A(3) substate, the N(epsilon)-H of His64 is oriented toward the CO, and the N(delta) is on the surface of the protein. The MD simulations show that dynamics of His64 represent the major source of vibrational dephasing of the CO ligand in the A(3) state on both femtosecond and picosecond time scales. Dephasing in the A(1) state is controlled by His64 on femtosecond time scales, and by the rest of the protein and the water solvent on longer time scales.  相似文献   

15.
In this study, the first homo- and hetero-nuclear cyanocomplexes of histamine (His), namely, [Cu(His)2][Ni(CN)4], [Ni(His)2Ni(CN)4]n and [Cd(His)Ni(CN)4]n are investigated by X-ray diffraction (XRD) technique, electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy. Besides being the first hetero-nuclear complex of histamine, [Cu(His)2][Ni(CN)4] complex has an interesting property as being a supramolecular structure constructed by three different non-covalent interactions as hydrogen bond, Ni(II)?π and C-H?π interactions. In [Cu(His)2][Ni(CN)4] complex histamine exists in gauche conformation and Nτ-H tautomeric form, and plays an important role in supramolecular structure formation by participating in non-covalent interactions through its aminoethyl side chain and imidazole group. The shifts and splittings in the stretching vibrations of cyano groups show that [Ni(His)2Ni(CN)4]n and [Cd(His)Ni(CN)4]n complexes are one-dimensional and three-dimensional coordination polymers, respectively. In [Ni(His)2Ni(CN)4]n complex, histamine acts as a chelating ligand by adopting gauche conformation. In [Cd(His)Ni(CN)4]n complex, Cd(II) ions and [Ni(CN)4]2− anions form two-dimensional layered structure and histamine has a novel bonding mode as a bridging ligand between these layered structures. It is concluded that histamine may have trans conformation and Nπ-H tautomer as a bridging ligand in [Cd(His)Ni(CN)4]n complex, which has not been reported so far for the solid structures of bidentate histamine. EPR studies on [Cu(His)2][Ni(CN)4] and Cu2+-doped [Cd(His)Ni(CN)4]n complexes show that the ground state of the unpaired electron in both complexes is dominantly dx2-y2.  相似文献   

16.
The electronic structures of heme a of cytochrome c oxidase in the redox states were studied, using hybrid density functional theory with a polarizable continuum model and a point charge model. We found that the most stable electronic configurations of the d electrons of the Fe ion are determined by the orbital interactions of the d orbitals of the Fe ion with the π orbitals of the porphyrin ring and the His residues. The redox reaction of the Fe ion influences the charge density on the formyl group through the π conjugation of the porphyrin ring. In addition, we found the charge transfer from the Fe ion to the propionate group of heme a in the redox change despite the lack of the π‐conjugation. We elucidated that the charge propagation originates from the heme a structure itself and that the origin of the charge delocalization to the heme propionate is the orbital interactions between the d orbital of the Fe ion and the p orbitals of the carboxylate part of the heme propionate via the π conjugation of the porphyrin ring and the σ* orbital of the C? C bond of the propionate group. The electrostatic effect by surrounding proteins enhances the charge transfer from the Fe ion to the propionate group. These results indicate that heme propionate groups serve electron mediators in electron transfer as well as electrostatic anchors, and that proteins surrounding the active site reinforce the congenital abilities of the cofactors. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

17.
We study how the results of molecular dynamics (MD) simulations are affected by various choices during the setup, e.g., the starting velocities, the solvation, the location of protons, the conformation of His, Asn, and Gln residues, the protonation and titration of His residues, and the treatment of alternative conformations. We estimate the binding affinity of ligands to four proteins calculated with the MM/GBSA method (molecular mechanics combined with a generalized Born and surface area solvation energy). For avidin and T4 lysozyme, all variations gave similar results within 2 kJ/mol. For factor Xa, differences in the solvation or in the selection of alternative conformations gave results that are significantly different from those of the other approaches by 4-6 kJ/mol, whereas for galectin-3, changes in the conformations, rotations, and protonation gave results that differed by 10 kJ/mol, but only if residues close to the binding site were modified. This shows that the results of MM/GBSA calculations are reasonably reproducible even if the MD simulations are set up with different software. Moreover, we show that the sampling of phase space can be enhanced by solvating the systems with different equilibrated water boxes, in addition to the common use of different starting velocities. If different conformations are available in the crystal structure, they should also be employed to enhance the sampling. Protonation, ionization, and conformations of Asn, Gln, and His may also be used to enhance sampling, but great effort should be spent to obtain as reliable predictions as possible close to the active site.  相似文献   

18.
In this work, we have investigated the binding conformations of the substrate in the active site of 5-HIU hydrolase kpHIUH and its catalytic hydrolysis mechanism. Docking calculations revealed that the substrate adopts a conformation in the active site with its molecular plane laying parallel to the binding interface of the protein dimer of kpHIUH, in which His7 and His92 are located adjacent to the hydrolysis site C6 and have hydrogen bond interactions with the lytic water. Based on this binding conformation, density functional theory calculations indicated that the optimal catalytic mechanism consists of two stages: (1) the lytic water molecule is deprotonated by His92 and carries out nucleophilic attack on C6=O of 5-HIU, resulting in an oxyanion intermediate; (2) by accepting a proton transferred from His92, C6–N5 bond is cleaved to completes the catalytic cycle. The roles of His7, His92, Ser108 and Arg49 in the catalytic reaction were revealed and discussed in detail.  相似文献   

19.
Flash photolysis studies on the five-coordinate heme nitrosyl of Alcaligenes xylosoxidans cytochrome c' were carried out to investigate the ramifications of its proximal nitrosyl ligand on NO release. Delta absorbance spectra recorded 5 ms after photolysis indicate that approximately 5% of the photolyzed hemes are converted to a five-coordinate high spin ferrous state, revealing that reattachment of the endogenous His ligand is fast enough to trap some of the photolyzed heme. Analysis of NO rebinding suggests that the photolyzed ferrous protein is initially in a strained conformation, which relaxes on a millisecond time scale. The strained ferrous heme appears to contain a significantly labilized Fe-His bond, which allows direct second-order rebinding to the proximal face at high NO-concentrations. In contrast, the NO-binding properties of the relaxed conformation are similar to those previously observed in stopped-flow studies, which showed that a five-coordinate heme-nitrosyl is formed via a six-coordinate intermediate. The discovery of a rapid proximal His ligand reattachment to NO-dissociated heme reveals a novel "kinetic trap" mechanism for lowering the five-coordinate heme nitrosyl population in response to decreased ambient NO concentrations. Thus, NO dissociation from the five-coordinate heme nitrosyl, whether thermal or photochemical, is followed by rapid, and only slowly reversible, His reattachment which acts to kinetically trap the heme in its five-coordinate ferrous state. Because return to the five-coordinate heme nitrosyl requires two NO-dependent steps, the protein uses a kind of kinetic amplification of the thermodynamic dissociation that occurs in response to decreased NO concentrations. The implications of this "kinetic-trap" mechanism for NO release from soluble guanylate cyclase are discussed.  相似文献   

20.
We have recently reported that aquo and thioether complexes of the ferric cytochrome c heme peptide N-acetylmicroperoxidase-8 (FeIII-1) exhibit greater low-spin character than do the corresponding complexes of a synthetic, water-soluble, monohistidine-ligated heme peptide (FeIII-2; Cowley, A. B.; Lukat-Rodgers, G. S.; Rodgers, K. R.; Benson, D. R. Biochemistry 2004, 43, 1656-1666). Herein we report results of studies showing that weak-field ligands bearing a full (fluoride, chloride, hydroxide) or partial (phenoxide, thiocyanate) negative charge on the coordinating atom trigger dissociation of the axial His ligand in FeIII-2 but not in FeIII-1. We attribute the greater sensitivity of His ligation in FeIII-1 to weak-field anionic ligands than to weak-field neutral ligands to the following phenomena: (1) anionic ligands pull FeIII further from the mean plane of a porphyrin than do neutral ligands, which will have the effect of straining the His-Fe bond in FeIII-2, and (2) heme in FeIII-2 is likely to undergo a modest doming distortion following anion binding that will render the His-ligated side of the porphyrin concave, thereby increasing porphyrin/ligand steric interactions. We propose that ruffling of the heme in FeIII-1 is an important factor contributing to its ability to resist His dissociation by weak-field anions. First, ruffling should allow His to more closely approach the porphyrin than is possible in FeIII-2, thereby reducing bond strain following anion binding. Second, the ruffling deformation in FeIII-1, which is enforced by the double covalent heme-peptide linkage, will almost certainly prevent significant porphyrin doming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号