共查询到20条相似文献,搜索用时 14 毫秒
1.
Abd El-halim HF Omar MM Mohamed GG 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,78(1):36-44
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species. 相似文献
2.
《Journal of Saudi Chemical Society》2014,18(1):27-34
A series of metal complexes of Cu(II), Ni(II), Co(II), Fe(III) and Mn(II) have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H) pyran-2,4(3H)-dione or DHA), o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand) with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA) and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40%) solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions. 相似文献
3.
《Journal of Coordination Chemistry》2012,65(23):4153-4164
Complexes of Cu(II), Ni(II), Co(II), Mn(II), and Fe(III) with the tridentate Schiff base, 4-hydroxy-3(1-{2-(benzylideneamino)-phenylimino}-ethyl)-6-methyl-2H-pyran-2-one (HL) derived from 3-acetyl-6-methyl-(2H)-pyran-2,4(3H)-dione (dehydroacetic acid or DHA), o-phenylenediamine, and benzaldehyde were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy, and mass spectra. From analytical data, the stiochiometry of the complexes was found to be 1?:?2 (metal?:?ligand) with octahedral geometry. The molar conductance values suggest nonelectrolytes. X-ray diffraction data suggest monoclinic crystal systems. IR spectral data suggest that the ligand is dibasic tridentate with ONN donors. To investigate the relationship between formation constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff base and stability constants of its binary metal complexes have been determined potentiometrically in THF–water (60?:?40) at 30?±?1°C and at 0.1?mol?L?1 NaClO4 ionic strength. The potentiometric titrations suggest 1?:?1 and 1?:?2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Trichoderma with determination of minimum inhibitory concentrations of ligand and metal complexes. The structure–activity correlation based on stability constants of metal complexes is discussed. Activity enhances upon complexation and the order of activity is in accord with the stability order of metal ions. 相似文献
4.
V. B. Badwaik R. D. Deshmukh A. S. Aswar 《Russian Journal of Coordination Chemistry》2009,35(4):247-252
New complexes of a Schiff base derived from 2-hydroxy-5-chloroacetophenone and glycine with Mn(II), Fe(II), Co(II), Ni(II),
Cu(II), Zn(II), Cd(II), and UO2(VI) have been synthesized. The ligand and the complexes have been characterized on the basis of analytical data, electrical
conductance, IR, ESR, and electronic spectra, magnetic susceptibility measurements and thermogravimetric analysis. The ligand
acts as a dibasic tridentate (ONO) donor molecule in all the complexes except the Zn(II) complex, where it acts as a monobasic
bidentate (OO) donor. Antibacterial activities of the ligand and its metal complexes have been determined by screening the
compounds against various Gram(+) and Gram(−) bacterial strains. The solid state d.c. electrical conductivity of the ligand
and its complexes has been measured over 313–398 K and the complexes were found to be of semiconducting nature.
The article is published in the original. 相似文献
5.
《Journal of Coordination Chemistry》2012,65(21):3522-3531
Synthesis and characterization of four Mo(VI) complexes of a diprotic tridentate ONS chelating ligand (H2L) containing the rather elusive [MoVIOS]2+ core is reported. These [MoVIOSL] complexes are obtained from their corresponding [MoVIO2L] precursors using a combination of PPh3 and PPh3S. This process of oxo-abstraction and sulfido-inclusion affected by PPh3–PPh3S is reported for the first time and may be considered as a general method of converting [MoVIO2L] complexes to the corresponding [MoVIOSL] complexes. Direct structural characterization of these complexes could not be done due to the ease of solvolysis of these oxosulfidomolybdenum(VI) complexes to the corresponding dioxomolybdenum(VI) analogues. However, the structure of these [MoVIOSL] complexes could be reasonably surmised from the corresponding structurally characterized [MoVIO2L] complexes. Points of attachment of the potentially pentadentate but functionally tridentate ONS chelating ligands to [MoVIOS]2+ are located mainly through analysis of IR and UV-Vis spectral data and comparison with corresponding [MoVIO2L] complexes of known structure. Conditions under which solvolysis of [MoVIOS]2+ to the [MoVIO2]2+ core is significantly retarded have been identified and make us hopeful of obtaining single crystals of [MoVIOSL]. 相似文献
6.
7.
Neelakantan MA Sundaram M Nair MS 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2011,79(5):1693-1703
Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I=0.15 mol dm(-3) NaClO4. MABH, MAB and MAB2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide. 相似文献
8.
A novel hexadentate nitrogen donor [N6] macrocyclic ligand viz, 1,5,11,15,21,22-hexaaza-2,14-dimethyl-l4,12-diphenyltricyclo[15.3.1.I(7–11)]docosane[1,4,6,8,10(22)-11,14,16,18,20(21)]decaene
(L), has been synthesised. The Co (II), Ni (II), and Cu (II) complexes with this ligand have been prepared and subjected to
elemental analysis, molar conductance, magnetic susceptibility measurements, mass, 1H NMR (ligand), IR, electronic, and ESR spectral studies and electrochemical investigation. On the basis of molar conductance
the complexes can be formulated as [M(L)]X2 (where M = Co (II), Ni (II), Cu (II) and X = Cl− and NO3−) due to their 1: 2 electrolytic nature in DMSO. All the complexes are of the high-spin type and are six-coordinated. On the
basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned for the Co(II) and Ni(II) complexes,
whereas a tetragonal geometry for the Cu(II) complexes was found. Antimicrobial activity of L and its complexes as growth
inhibiting agents have been screened in vitro against two species (F. moniliformae and R. solani) of plant pathogenic fungi.
The text was submitted by the authors in English. 相似文献
9.
A series of first-row transition metal complexes with the unsymmetrically disubstituted pyridazine ligand picolinaldehyde (6-chloro-3-pyridazinyl)hydrazone (PIPYH), featuring an easily abstractable proton in the backbone, was prepared. Ligand design was inspired by literature-known picolinaldehyde 2-pyridylhydrazone (PAPYH). Reaction of PIPYH with divalent nickel, copper, and zinc nitrates in ethanol led to complexes of the type [Cu(II)(PIPYH)(NO(3))(2)] (1) or [M(PIPYH)(2)](NO(3))(2) [M = Ni(II) (2) or Zn(II) (3)]. Complex synthesis in the presence of triethylamine yielded fully- or semideprotonated complexes [Cu(II)(PIPY)(NO(3))] (4), [Ni(II)(PIPYH)(PIPY)](NO(3)) (5), and [Zn(II)(PIPY)(2)] (6), respectively. Cobalt(II) nitrate is quantitatively oxidized under the reaction conditions to [Co(III)(PIPY)(2)](NO(3)) (7) in both neutral and basic media. X-ray diffraction analyses reveal a penta- (1) or hexa-coordinated (2, 3, and 7) metal center surrounded by one or two tridentate ligands and, eventually, κ-O,O' nitrate ions. The solid-state stoichiometry was confirmed by electron impact (EI) and electrospray ionization (ESI) mass spectrometry. The diamagnetic complexes 5 and 6 were subjected to (1)H NMR spectroscopy, suggesting that the ligand to metal ratio remains constant in solution. Electronic properties were analyzed by means of cyclic voltammetry and, in case of copper complexes 1 and 4, also by electron paramagnetic resonance (EPR) spectroscopy, showing increased symmetry upon deprotonation for the latter, which is in accordance with the proposed stoichiometry [Cu(II)(PIPY)(NO(3))]. Protic behavior of the nickel complexes 2 and 5 was investigated by UV/vis spectroscopy, revealing high π-backbonding ability of the PIPYH ligand resulting in an unexpected low acidity of the hydrazone proton in nickel complex 2. 相似文献
10.
El-Ayaan U Kenawy IM El-Reash YG 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,68(2):211-219
A new series of first-row transition metal complexes with 1-acetylpyridinium chloride-4-benzoyl thiosemicarbazide (H2GPBzIT) have been prepared and characterized by elemental analysis, spectroscopic and magnetic measurements. The proton-ligand ionization constants were determined potentiometrically using Irving-Rossotti technique. The stability constants of complexes were also calculated and were found in agreement with the sequence of stability constants of Irving and Williams. Thermal stability and degradation kinetics have been measured using thermogravimetric analyzer. Kinetic parameters were obtained for each stage of thermal degradation of complexes using Coats-Redfern method. 相似文献
11.
Siddiqi ZA Kumar S Khalid M Shahid M 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,71(5):1845-1850
The dipodal ligands (Im) and (BIm) as well as complexes [FeLCl3] [L = Im (1) and BIm (2)] have been prepared and studied using spectroscopic techniques. The magnetic moment, IR, electronic (ligand field), FAB-mass and NMR spectral data indicate a hexa-coordinate geometry around high-spin state Fe3+ where the ligands coordinate as a tridentate [N,N,N] chelating agent. 57Fe-Mössbauer spectral data confirmed the presence of a ligand asymmetry around Fe3+ in a high-spin state electronic configuration (t2g3,eg2, S = 5/2) with nuclear transition Fe(±3/2 → ±1/2) exhibiting Kramer's double degeneracy. The molecular computations provided the optimum energy perspective plots for the molecular geometries giving the important structural data. 相似文献
12.
Abd El-Wahab ZH El-Sarrag MR 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2004,60(1-2):271-277
We report the synthesis and structural characterization of series of tetra- and hexacoordinate metal chelate complexes of phosphate Schiff base ligands having the general composition LMX(n).H(2)O and L(2)MX(n) (L=phosphate Schiff base ligand; M=Ag(+), Mn(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), or Fe(3+) and X=NO(3)(-), Br(-) or Cl(-)). The structure of the prepared compounds was investigated using elemental analysis, IR, 1H and 31P NMR, UV-vis, mass spectra, solid reflectance, magnetic susceptibility and conductance measurements as well as conductometric titration. In all the complexes studied, the ligands act as a chelate ligand with coordination involving the phosphate-O-atom and the azomethine-N-atom. IR, solid reflectance spectra and magnetic moment measurement are used to infer the structure and to illustrate the coordination capacity of ligand. IR spectra show the presence of coordinated nitrate and water molecule, the magnetic moments of all complexes show normal magnetic behavior and the electronic spectra of the metal complexes indicate a tetra- and octahedral structure for Mn(2+), octahedral structure of Fe(3+) and both square-planar and distorted octahedral structure for Cu(2+) complexes. Antimicrobial activity of the ligands and their complexes were tested using the disc diffusion method and the chosen strains include Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Microsporum canis, Trichophyton mentagrophyte and Trichophyton rubrum. Some known antibiotics are included for the sake of comparison and the chosen antibiotic are Amikacin, Doxycllin, Augmantin, Sulperazon, Unasyn, Septrin, Cefobid, Ampicillin, Nitrofurantion, Traivid and Erythromycin. 相似文献
13.
Chandra S Gupta LK 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,62(4-5):1125-1130
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes have been synthesized with a new tetradentate ligand viz. 1,3,7,9-tetraaza-2,4,8,10-tetraketo-6,12-diphenyl-cyclododecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to be nonelectrolytic nature for Mn(II), Co(II) and Cu(II) while 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl− and NO3−).On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro. 相似文献
14.
Transition metal complexes of Mn(II) and Ni(II) have been synthesized with novel bioactive Schiff's base ligand. Schiff's base ligand i.e. benzoylacetone‐bis(2‐amino‐4‐methylbenzothioazole) has been synthesized via condensation reaction between 2‐amino‐4‐methylbenzothioazole and benzoylacetone in 2:1 ratio, respectively. Synthesized ligand has been characterized using elemental analysis, infra‐red, 1H–NMR and mass spectroscopy techniques. Characterization of complexes was based on magnetic moment, molar conductance, elemental analysis, electronic spectra, infra‐red and EPR spectroscopic techniques. Molar conductance data suggest that metal complexes are non‐electrolytic in nature. Therefore, these complexes are formulated as [M(L)X2], where M = Mn(II), Ni(II), L = Schiff's base ligand, X = Cl?, CH3COO?, NO3?. Data of characterization study suggest octahedral geometry for Mn(II) and Ni(II) complexes. Geometry of metal complexes was also optimized with the help of computational study i.e. molecular modelling. Computational study also suggests octahedral geometry for complexes. Free ligand as well as its all metal complexes have been screened against the growth of pathogenic bacteria (E.coli, S.aureus) and fungi (C.albicans, C.krusei, C.parapsilosis, C.tropicalis) to assess their inhibition potential. The inhibition data revealed that metal complexes exhibit higher inhibition potential against the growth of bacteria and fungi microorganisms than free ligand. 相似文献
15.
Janas Z Wiśniewska D Jerzykiewicz LB Sobota P Drabent K Szczegot K 《Dalton transactions (Cambridge, England : 2003)》2007,(20):2065-2069
The direct reaction between [VCl(3)(thf)3] or [VO(OEt)3] and 2,2'-thiobis{4-(1,1,3,3-tetramethyl-butyl)phenol (tbopH(2)) leads to the formation of [V(2)(micro-tbop-kappa(3)O,S,O)2Cl(2)(CH(3)CN)(2)] (1).4CH(3)CN or [V(2)(micro-OEt)2(O)2(tbop-kappa(3)O,S,O)2] (2), respectively, in high yield. Compounds 1 and 2 were characterized by chemical and physical techniques including X-ray crystallography and variable temperature magnetic susceptibility studies (J = -29.1 cm(-1)) for 1. Complexes 1 and 2 were supported on MgCl2 and when activated with aluminium alkyls, were found to effectively polymerize ethene to produce polyethylene with a narrow molecular weight distribution M(w)/M(n) approximately 3. 相似文献
16.
Chandra S Gupta LK Sangeetika 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,62(1-3):453-460
The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, (1)H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand. 相似文献
17.
Mixed‐ligand complexes of the type [M(CQ)(Ph)(OH)(H2O)], where M = Cu(II), Ni(II), Co(II) and Mn(II), have been investigated. Furthermore, there has been some additional work investigating the effect of metal ions on biological activity. Aiming to obtain novel transition metal complexes that exhibit biological activity, we have synthesized mixed ligand complexes using clioquinol (5‐chloro‐7‐iodo‐8‐hydroxyquinoline) and 1,10‐phenanthroline as ligands. The compounds were characterized using IR, FAB mass spectroscopy, elemental analyses, electronic spectra, magnetic measurements and gravimetric analyses. The kinetic parameters such as order of reaction, the energy of activation, the pre‐exponential factor, activation entropy, activation enthalpy and free energy of activation have been reported. The complexes show antituberculosis and antifungal (minimal inhibitory concentration) activities. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
We have used the condensation method to synthesize 2-acetyl-5-methylsemicarbazone ligand. Manganese(II) and Cobalt(II) complexes having formula [ML2]X2 were synthesized where M = Mn(II) and Co(II), L = ligand, X = Cl−, CH3COO−, NO3−, ½SO42−. The characterization data suggests the octahedral geometry for all the synthesized complexes. Tridentate nature of the 2-acetyl-5-methylsemicarbazone ligand was revealed by IR studies. Molar conductance analysis suggested the electrolytic nature of the complexes. The theoretical study includes geometrical optimization, HOMO-LUMO energy gap, energetic parameters and dipole moment. These results also confirmed the tridentate nature of the ligand and the octahedral geometry of complexes. The molecular electrostatic potential (MEP) study suggested the reactive sites for an electrophilic or nucleophilic attack in the ligand. We tested the synthesized compounds for their antifungal and antibacterial action via well diffusion method and found that parent ligand after the coordination with the metal ion showed more effective inhibition against bacteria and fungi. 相似文献
19.
N. Raman J. Dhaveethu Raja A. Sakthivel 《Russian Journal of Coordination Chemistry》2008,34(6):400-406
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Cd(II), Hg(II), and VO(IV) have been
designed and synthesized from the Schiff base derived from cinnamidene-4-aminoantipyrine and 2-aminophenol by involving the
carbonyl group of 4-aminoantipyrine. The structural features have been arrived from their elemental analyses, magnetic susceptibility,
molar conduction, FAB mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of the ML2 type. The UV-Vis, magnetic susceptibility, and ESR spectral data of the complexes suggest an octahedral geometry around the
central metal ion except the VO(IV) complex, which has a square-pyramidal geometry. The redox behavior of the copper and vanadyl
complexes has been studied by cyclic voltammetry. The antimicrobial activity of the ligand and its complexes has been extensively
studied on microorganisms such as Salmonella typhi, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Aspergillus niger, and Rhizoctonia bataicola. It has been found that most of the complexes have higher activities than that of the free ligand. The nuclease activity
of the above metal complexes shows that the complexes cleave DNA through redox chemistry. In the presence of H2O2, the complexes are capable of cleaving calf thymus DNA.
The text was submitted by the authors in English. 相似文献
20.
《Journal of Coordination Chemistry》2012,65(4):700-712
A new azohydrazone, 2-hydroxy-N′-2-hydroxy-5-(phenyldiazenyl)benzohydrazide (H3L) and its copper(II), nickel(II), cobalt(II), manganese(II), zinc(II), cadmium(II), mercury(II), vanadyl(II), uranyl(II), iron(III), and ruthenium(III) complexes have been prepared and characterized by elemental and thermal analyses as well as spectroscopic techniques (1H-NMR, IR, UV-Vis, ESR), magnetic, and conductivity measurements. Spectral data showed a neutral bidentate, monobasic bidentate, monobasic tridentate, and dibasic tridentate bonding to metal ions via the carbonyl oxygen in ketonic or enolic form, azomethine nitrogen, and/or deprotonated phenolic hydroxyl oxygen. ESR spectra of solid vanadyl(II) complex (2), copper(II) complexes (3–5), and (7) and manganese(II) complex (10) at room temperature show isotropic spectra, while copper(II) complex (6) shows axial symmetry with covalent character. Biological results show that the ligand is biologically inactive but the complexes exhibit mild effect on Gram positive bacteria (Bacillus subtilis), some octahedral complexes exhibit moderate effect on Gram negative bacteria (Escherichia coli), and VO(II), Cd(II), UO(II), and Hg(II) complexes show higher effect on Fungus (Aspergillus niger). When compared to previous results, metal complexes of this hydrazone have a mild effect on microorganisms due to the presence of the azo group. 相似文献