首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polynitro cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohexaazaisowurtzitane has the same framework with but higher stability than CL-20 and is a potential new high energy density compound (HEDC). In this paper, the B3LYP/6-31G(d,p) method of density functional theory (DFT) has been used to study its heat of formation, IR spectrum, and thermodynamic properties. The stability of the compound was evaluated by the bond dissociation energies. The calculated results show that the first step of pyrolysis is the rupture of the N-NO(2) bond in the side chain and verify the experimental observation that the title compound has better stability than CL-20. The crystal structure obtained by molecular mechanics belongs to the P2(1)2(1)2(1) space group, with lattice parameters a = 12.59 ?, b = 10.52 ?, c = 12.89 ?, Z = 4, and ρ = 2.165 g·cm(-3). Both the detonation velocity of 9.767 km·s(-1) and the detonation pressure of 45.191 GPa estimated using the Kamlet-Jacobs equation are better than those of CL-20. Considering that this cage compound has a better detonation performance and stability than CL-20, it may be a superior HEDC.  相似文献   

2.
A novel method for judging the energy output of energetic compounds has been deduced from the conservation of energy condition. On the basis of B3LYP/6-31++G** fully optimized geometries, the enthalpy of formation, crystal density, detonation velocity and pressure for polynitrocubanes have been calculated using various theoretical methods. It has been observed that for polynitrocubanes the introduction of –NH2 group onto the skeleton results in the destabilization of the neighboring C–C bonds on the skeleton. The C–C and C–NO2 bonds of octanitrocubane (ONC) are stronger than those of partly nitrated cubanes, implying that the shock stability of ONC is superior to that of partly nitrated cubanes. For polynitrocubanes the calculated crystal density by the Karfunkel–Gdanitz ab initio method is within 0.07 g/cm3 of experimental crystal density, being more accurate than by the group additivity method. The detonation velocity, the detonation pressure, and the energy output all increase from tetranitrocubane to ONC. The detonation velocity and pressure of ONC are predicted to reach 9.58 km s?1 and 60.0 Gpa, respectively. It is first indicated that the energy output for 1, 2, 3, 5, 8-pentanitrocuban is close to that of the widely used high explosive HMX and for ONC is about 80% larger than that of HMX.  相似文献   

3.
Based on the full optimized molecular geometric structures via B3LYP/6-311+G(2d,p) method, a new gem-dinitro energetic plasticizer, bis(2,2-dinitropropyl ethylene)formal was investigated in order to search for high-performance energetic material. IR spectrum, heat of formation, and detonation performances were predicted. The bond dissociation energies and bond orders for the weakest bonds were analyzed to investigate the thermal stability of the title compound. The results show that the four N-NO2 BDEs are nearly equal to the values of 164.38 kJ/mol, which shows that the title compound is a stable compound. The detonation velocity and pressure were evaluated by using Kamlet-Jacobs equations basedon the theoretical density and condensed HOF. The crystal structure obtained by molec-ular mechanics belongs to P21 space group, with lattice parameters Z=2, a=13.8017 ?, b=13.4072 ?, c=5.5635 ?.  相似文献   

4.
3,6-二肼基-1,2,4,5-四嗪的晶体结构及理论研究   总被引:2,自引:0,他引:2  
通过缓慢蒸发溶剂法培养得到3, 6-二肼基-1, 2, 4, 5-四嗪(DHT)的单晶, 用X-射线单晶衍射仪进行了结构测定. 该晶体属于单斜晶系, P2(1)/c空间群, a=4.032 (4) ?, b=5.649 (6) ?, c=12.074 (14) ?. β=99.32°, Z=2, V=271.4(5) ?3. DHT分子中肼基N原子与四嗪环基本位于同一平面呈现轴对称结构, 分子中的大量氢键使之形成箭尾形排列的三维网络结构. 通过实验测得DHT的燃烧热为1787kJ?mol-1, 5s爆发点为454 K. 在DFT-B3LYP/6-311G*水平下对DHT的电子结构和自然键轨道进行了分析. 通过原子化能的方法计算得到DHT的标准生成热为1075 kJ?mol-1, 与实验值接近. 爆轰性能计算表明, DHT在密度为1.64 g?cm-3时, 爆速和爆压分别为9.27 km?s-1和36.02 GPa, 高于TNT和HMX.  相似文献   

5.
Previous studies have shown that the design of cocrystal explosives is one of the most promising approaches to decrease the sensitivity and maintain the detonation performance of existing explosives. As is well‐known, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) is a high energy density material (HEDM). But the application of HMX is limited, due to its high sensitivity. Thus, an insensitive explosive 5‐nitro‐1,2,4‐triazol‐3‐one (NTO) is proposed as a cocrystal former (CCF) to cocrystallize with HMX in the present work. The binding energies, heat of formations (HOFs), thermodynamic properties, atoms in molecules, and natural bond orbital analysis of four HMX/NTO complexes have been calculated using density functional theory methods, including meta‐hybrid functional (M062X) and dispersion‐corrected density functionals (B97D, ωB97XD). In addition, the crystal structure of HMX/NTO cocrystal has been investigated using Monte Carlo simulation and first principles methods. The HMX/NTO cocrystal is most likely to crystallize in triclinic crystal system with P1 space group, and corresponding cell parameters are Z = 2, a = 9.06 Å, b = 8.19 Å, c = 10.27 Å, α = 81.94°, β = 98.42°, γ = 82.03°, and ρ = 1.92 g/cm3. The detonation velocity and detonation pressure of HMX/NTO cocrystal are 8.73 km/s and 35.14 GPa, respectively, a little lower than those of HMX. Finally, bond dissociation energies (BDEs) of the weakest trigger bond in HMX/NTO complexes are calculated. The results show that HMX/NTO complexes are thermally stable and meet the thermal requirement of HEDMs (BDE > 120 kJ/mol). © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Polynitrohexaazaadamantanes (PNHAAs) have been the subject of much recent research because of their potential as high energy density materials (HEDMs). The B3LYP/6-31G method was employed to evaluate the heats of formation (HOFs) for PNHAAs by designing isodesmic reactions. The HOFs are found to be correlative with the number (n) and the space orientations of nitro groups. Detonation velocities (D) and detonation pressures (P) were estimated for PNHAAs by using the well-known Kamlet-Jacobs equations, based on the theoretical densities (rho) and HOFs. It is found that D and P increase as n ranges from 1 to 6, and PNHAAs with 4-6 nitro groups meet the criteria of an HEDM. When n is over 6, rho of PNHAAs slightly increases; however, the chemical energy of detonation (Q) decreases so greatly that both D and P decrease. The calculations on bond dissociation energies suggest that the N-N bond be the trigger bond during the pyrolysis initiation process of each PNHAA, and with increasing n, N-N bond dissociation energy (E(N-N)) decreases on the whole, that is to say, the relative stability of PNHAAs decreases. All E(N-N)(s) of PNHAAs are more than 30 kcal.mol(-1), which further proves that four PNHAAs with 4-6 nitro groups can be used as the candidates of HEDMs. Considering the synthesis difficulty and the performance as an energetic compound, we finally recommended 2,4,6,8,10-pentanitrohexaazaadamantane as the target HEDM for PNHAAs.  相似文献   

7.
Density functional theory (DFT) method has been employed to study the effect of nitroamino group as a substituent in cyclopentane and cyclohexane, which usually construct the polycyclic or caged nitra-mines. Molecular structures were investigated at the B3LYP/6-31G** level, and isodesmic reactions were designed for calculating the group interactions. The results show that the group interactions ac-cord with the group additivity, increasing with the increasing number of nitroamino groups. The dis-tance between substituents influences the interactions. Detonation performances were evaluated by the Kamlet-Jacobs equations based on the predicted densities and heats of formation, while thermal stability and pyrolysis mechanism were studied by the computations of bond dissociation energy (BDE). It is found that the contributions of nitroamino groups to the detonation heat, detonation velocity, detonation pressure, and stability all deviate from the group additivity. Only 3a, 3b, and 9a-9c may be novel potential candidates of high energy density materials (HEDMs) according to the quantitative cri-teria of HEDM (ρ≈ 1.9 g/cm3, D ≈ 9.0 km/s, P ≈ 40.0 GPa). Stability decreases with the increasing number of N-NO2 groups, and homolysis of N-NO2 bond is the initial step in the thermolysis of the title com-pounds. Coupled with the demand of thermal stability (BDE > 20 kcal/mol), only 1,2,4-trinitrotriazacy-clohexane and 1,2,4,5-tetranitrotetraazacyclohexane are suggested as feasible energetic materials. These results may provide basic information for the molecular design of HEDMs.  相似文献   

8.
To look for high energy density materials (HEDM), the relationships between the structures and the performances of polynitroadamantanes (PNAs) were studied. The assigned infrared spectra of PNAs obtained at the density functional theory (DFT) B3LYP/6-31G level were used to compute the thermodynamic properties on the basis of the principle of statistical thermodynamics. The thermodynamic properties are linearly related with the number of nitro groups as well as with the temperatures. Detonation properties of PNAs were evaluated by using the Kamlet-Jacobs equation based on the calculated densities and heats of formation for titled compounds, and it is found that only when the number of nitro groups of PNA is equal to or more than eight can it be possible for PNAs to be used as HEDMs. The relative stabilities of PNAs were studied by the pyrolysis mechanism using the UHF-PM3 method. The homolysis of the C-NO2 bond is predicted to be the initial step of thermal decomposition. The activation energies (Ea) for the homolysis decrease with the number of nitro groups being increased on the whole. The stability order of dinitroadamantane isomers derived from the interactions among nitro groups is consistent with what is determined by Ea. The relations between the Ea's and the electronic structure parameters were discussed. In combination with the stability, PNA (1,2,3,4,5,6,7,8,9,10-) is recommended as the target of HEDM with insensitivity.  相似文献   

9.
The structure, band gap, thermodynamic properties and detonation properties of methyl, amino, nitro, and nitroso substituted 3,4,5-trinitropyrazole-2-oxides are explored using density functional theory at the B3LYP/aug-cc-pVDZ level. It is found that the NH2 or CH3 group substitution for the acidic proton at the N4 position of trinitropyrazole-2-oxide (P20) decreases the heat of detonation and crystal density. The density (2.20–2.50 g/cm3), detonation velocity (10.20–10.92 km/s), and detonation pressure (52.30–59.84 GPa) of the title compounds are higher compared with 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), and octanitrocubane (ONC).  相似文献   

10.
Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures, infrared (IR) spectra, and thermodynamic properties of the high energy density compound hexanitrohexaazatricyclotetradecanedifuroxan (HHTTD) at the B3LYP/6-31G^** level of theory. The calculated results show that there are four conformational isomers (α, β, γ and δ) for HHTTD, and the relative stabilities of four conformers were assessed based on the calculated total energies and the energy-gaps between the frontier molecular orbitals. The computed harmonic vibrational frequencies are in reasonable agreement with the available experimental data. Thermodynamic properties derived from the IR spectra on the basis of statistical thermodynamic principles are linearly correlated with the temperature. Detonation performances were evaluated by using the Kamlet-Jacobs equations based on the calculated densities and heats of formation. It was found that four HHTTD isomers with the predicted densities of ca. 2 g·cm^-3, detonation velocities near 10 km·s^-1, and detonation pressures over 45 GPa, may be novel potential candidates of high energy density materials (HEDM). These results may provide basic information for the molecular design of HEDM.  相似文献   

11.
Bicyclo[1.1.1]pentane is a highly strained hydrocarbon system due to close proximity of nonbonded bridge head carbons. Based on fully optimized molecular geometries at the density functional theory using the B3LYP/6-31G* level, densities, detonation velocities, and pressures for a series of polynitrobicyclo[1.1.1]pentanes, as well as their thermal stabilities were investigated in search for high energy density materials (HEDMs). The designed compounds with more than two nitro groups are characterized by high heat of formation and magnitude correlative with the number and space distance of nitro groups. Density was calculated using the crystal packing calculations and an increase in the number of nitro groups increases the density. The increase in density shows a linear increase in the detonation characteristics. Bond dissociation energy was analyzed to determine thermal stability. Calculations of the bond length and bond dissociation energies of the C-NO2 bond indicate that this may be the possible trigger bond in the pyrolysis mechanism. 1,2,3-Trinitrobicyclo[1.1.1]pentane (S3), 1,2,3,4-tetranitrobicyclo[1.1.1]pentane (S4), and 1,2,3,4,5-pentanitrobicyclo[1.1.1]pentane (S5) have better energetic characteristics with better stability and insensitivity, and as such may be explored in defense applications as promising candidates of the HEDMs series.  相似文献   

12.
利用B3LYP/6-311+G(2d,p)方法对一种新型含能增塑剂双(2,2-二硝基丙基)甲缩醛进行几何优化,计算了其红外光谱、生成焓和爆轰特性. 分析了最弱键的键离解能和键级并预测了目标化合物的热稳定性. 结果表明双(2,2-二硝基丙基)甲缩醛中的四个N-NO2键的键离解能都为164.38 kJ/mol. 表明目标化合物是一个热力学性能稳定的化合物. 以凝聚相生成焓和分子密度为基础,采用Kamlet-Jacobs方法预测其爆速和爆压. 目标化合物的晶体结构属于P21空间群.  相似文献   

13.
Ninety‐one nitro and hydroxyl derivatives of benzene were studied at the B3LYP/6‐31G?? level of density functional theory. Detonation properties were calculated using the Kamlet‐Jacobs equation. Three candidates (pentanitrophenol, pentanitrobenzene, and hexanitrobenzene) were recommended as potential high energy density compounds for their perfect detonation performances and reasonable stability. The pyrolysis mechanism was studied by analyzing the bond dissociation energy (BDE) and the activation energy (Ea) of hydrogen transfer (H–T) reaction for those with adjacent nitro and hydroxyl groups. The results show that Ea is much lower than BDEs of all bonds, so when there are adjacent nitro and hydroxyl groups in a molecule, the stability of the compound will decrease and the pyrolysis will be initiated by the H–T process. Otherwise, the pyrolysis will start from the breaking of the weakest C–NO2 bond, and only under such condition, the Mulliken population or BDE of the C–NO2 bond can be used to assess the relative stability of the compound.  相似文献   

14.
Density functional theory (DFT) method has been employed to study the geometric and electronic structures of a series of four-membered ring compounds at the B3LYP/6-311G** and the B3P86/6-311G** levels. In the isodesmic reactions designed for the computation of heats of formation (HOFs), 3,3-dimethyl-oxetane, azetidine, and cyclobutane were chosen as reference compounds. The HOFs for N(3) substituted derivations are larger than those of oxetane compounds with --ONO2 and/or --NF2 substituent groups. The HOFs for oxetane with --ONO2 and/or --NF2 substituent groups are negative, while the HOFs for N3 substituted derivations are positive. For azetidine compounds, the substituent groups within the azetidine ring affect the HOFs, which increase as the difluoroamino group being replaced by the nitro group. The magnitudes of intramolecular group interactions were predicted through the disproportionation energies. The strain energy (SE) for the title compounds has been calculated using homodesmotic reactions. For azetidine compounds, the NF2 group connecting N atom in the ring decrease the SE of title compounds. Thermal stability were evaluated via bond dissociation energies (BDE) at the UB3LYP/6-311G** level. For the oxetane compounds, the O--NO2 bond is easier to break than that of the ring C--C bond. For the azetidine and cyclobutane compounds, the homolyses of C--NX2 and/or N--NX2 (X = O, F) bonds are primary step for bond dissociation. Detonation properties of the title compounds were evaluated by using the Kamlet-Jacobs equation based on the calculated densities and HOFs. It is found that 1,1-dinitro-3,3-bis(difluoroamino)-cyclobutane, with predicted density of ca. 1.9 g/cm(3), detonation velocity (D) over 9 km/s, and detonation pressure (P) of 41 GPa that are lager than those of TNAZ, is expected to be a novel candidate of high energy density materials (HEDMs). The detonation data of nitro-BDFAA and TNCB are also close to the requirements for HEDMs.  相似文献   

15.
The crystal structure of p-[N,N-bis(2-chloroethyl)amino]benzaldehyde-4-phenyl thiosemicarbazone(CEAB-4-PTSC) is described. The compound crystallizes in the monoclinic crystal system, P21/c space group, Z = 4, calculated density = 1.327 mg/cm3, V = 1978.2(6) ?3 with unit cell parameters a = 16.240(3) ?, b = 12.821(2) ?, c = 9.8543(16) ?, ?? = 105.382(6)°. The crystal structure reveals that the compound exists in the thione form and S1 and N2 are at trans-conformation to each other with respect to the N3-C12 bond. The packing of molecules in the crystal lattice is stabilized by intramolecular hydrogen bonds.  相似文献   

16.
The nitro derivatives of phenols are optimized to obtain their molecular geometries and electronic structures at the DFT‐B3LYP/6‐31G* level. Detonation properties are evaluated using the modified Kamlet–Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of nitro and hydroxy groups. Thermal stability and pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDEs) at the unrestricted B3LYP/6‐31G* level. The activation energies of H‐transfer reaction is smaller than the BDEs of all bonds and this illustrates that the pyrolysis of the title compounds may be started from breaking O? H bond followed by the isomerization reaction of H transfer. Moreover, the C? NO2 bond with the smaller bond overlap population and the smaller BDE will also overlap may be before homolysis. According to the quantitative standard of energetics and stability as a high‐energy density compound, pentanitrophenol essentially satisfies this requirement. In addition, we have discussed the effect of the nitro and hydroxy groups on the static electronic structural parameters and the kinetic parameter. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

17.
Based on the full optimized molecular geometric structure at B3LYP/cc‐pvtz method, the newly designed compound 4, 10‐dinitro‐2, 6,8, 12‐tetraoxa‐4, 10‐diazatetracyclo[5.5.0.05, 903, 11]dodecane (TEX) was investigated. Additionally, the IR spectrum, the thermal stability, and the detonation performance were predicted. The obtained crystal structure of TEX belongs to Pbca space group and lattice parameters are Z = 8, a = 8.614 Å, b = 12.877 Å, c = 26.065 Å, ρ = 2.015 g · cm–3. Calculation results show that TEX has better detonation properties than HMX and is a high energy density compound with better stability.  相似文献   

18.
Density function theory has been employed to study a series of compounds containing pyridine ring at the B3LYP/6-31G* level. Detonation performance was evaluated by using the Kamlet–Jacobs equations based on the calculated densities and heats of formation. Some compounds have high densities (ca. 1.9 g cm−3) and good performance (detonation velocities over 9 km s−1, detonation pressures about 39 GPa) and may be the potential candidates of high energy density materials. The thermal stability and the pyrolysis mechanism of the title compounds were investigated by the bond dissociation energies and the impact sensitivity predicted. Solvent effect has been investigated and it makes the title compounds more stable in solutions.  相似文献   

19.
The (Z)-4,4,4-trifluoro-3-(2-hydroxyethylamino)-1-(2-hydroxyphenyl)-2-buten-1-one (C(12)H(12)F(3)NO(3)) compound was thoroughly studied by IR, Raman, UV-visible, and (13)C and (19)F NMR spectroscopies. The solid-state molecular structure was determined by X-ray diffraction methods. It crystallizes in the P2(1)/c space group with a = 12.1420(4) ?, b = 7.8210(3) ?, c = 13.8970(5) ?, β = 116.162(2)°, and Z = 4 molecules per unit cell. The molecule shows a nearly planar molecular skeleton, favored by intramolecular OH···O and NH···O bonds, which are arranged in the lattice as an OH···O bonded polymer coiled around crystallographic 2-fold screw-axes. The three postulated tautomers were evaluated using quantum chemical calculations. The lowest energy tautomer (I) calculated with density functional theory methods agrees with the observed crystal structure. The structural and conformational properties are discussed considering the effect of the intra- and intermolecular hydrogen bond interactions.  相似文献   

20.
Phase-pure NaCN(3)H(4) and KCN(3)H(4) were synthesized from molecular guanidine and elemental metal in liquid ammonia at room temperature and elevated pressure close to 10 atm. The crystal structures were determined at 100 K using single-crystal X-ray diffraction. Both compounds crystallize in the monoclinic system (P2(1)/c, No. 14) but are far from being isotypical. NaCN(3)H(4) (a = 7.9496(12) ?, b = 5.0328(8) ?, c = 9.3591(15) ?, β = 110.797(3)°, Z = 4) contains a tetrahedrally N-coordinated sodium cation while KCN(3)H(4) (a = 7.1200(9) ?, b = 6.9385(9) ?, c = 30.404(4) ?, β = 94.626(2)°, Z = 16) features a very large c axis and a rather complicated packing of irregularly N-coordinated potassium cations. In the crystal structures, the guanidinate anions resemble the motif known from RbCN(3)H(4), that is, with one elongated C-((amino))N single bond and two shorter C-((imino))N bonds (bond order = 1.5) although the orientation of one N-H bond differs in the guanidinate anion of NaCN(3)H(4). Both crystal structures and infrared spectroscopy evidence the presence of hydrogen-bridging bonds, and the vibrational properties were analyzed by ab initio phonon calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号