首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel polynitro cage compound 10-(5-nitrimino-1,2,3,4-tetrazol-1-yl)methyl-2,4,6,8,12-pentanitro-hexaazaisowurtzitane, composed of CL-20 and tetrazole framework, has been designed. DFT-B3LYP/6-31G(d) and molecular mechanics methods are employed to calculate its IR spectrum, heat of formation, thermodynamic properties, and crystal structure. Besides, the stability of this compound is evaluated using the bond dissociation energy. The result shows that the initial step of thermal decomposition is the rupture of N–NO2 bond in the side chain. This compound is most likely to crystallize in the P-1 space group, and corresponding cell parameters are Z = 2, a = 7.65 Å, b = 14.30 Å, c = 10.36 Å, α = 91.53°, β = 50.83°, γ = 89.44°, and ρ = 2.025 g cm?3. Detonation velocity and detonation pressure of this compound are estimated to be 9.090 km s?1 and 38.078 GPa using the Kamlet–Jacobs equation, similar to those of CL-20. Considering detonation performance and thermal stability, this compound meets the requirements of exploitable high energy density materials.  相似文献   

2.
To look for high energy density materials (HEDM), the relationships between the structures and the performances of polynitroadamantanes (PNAs) were studied. The assigned infrared spectra of PNAs obtained at the density functional theory (DFT) B3LYP/6-31G level were used to compute the thermodynamic properties on the basis of the principle of statistical thermodynamics. The thermodynamic properties are linearly related with the number of nitro groups as well as with the temperatures. Detonation properties of PNAs were evaluated by using the Kamlet-Jacobs equation based on the calculated densities and heats of formation for titled compounds, and it is found that only when the number of nitro groups of PNA is equal to or more than eight can it be possible for PNAs to be used as HEDMs. The relative stabilities of PNAs were studied by the pyrolysis mechanism using the UHF-PM3 method. The homolysis of the C-NO2 bond is predicted to be the initial step of thermal decomposition. The activation energies (Ea) for the homolysis decrease with the number of nitro groups being increased on the whole. The stability order of dinitroadamantane isomers derived from the interactions among nitro groups is consistent with what is determined by Ea. The relations between the Ea's and the electronic structure parameters were discussed. In combination with the stability, PNA (1,2,3,4,5,6,7,8,9,10-) is recommended as the target of HEDM with insensitivity.  相似文献   

3.
4.
Polynitrohexaazaadamantanes (PNHAAs) have been the subject of much recent research because of their potential as high energy density materials (HEDMs). The B3LYP/6-31G method was employed to evaluate the heats of formation (HOFs) for PNHAAs by designing isodesmic reactions. The HOFs are found to be correlative with the number (n) and the space orientations of nitro groups. Detonation velocities (D) and detonation pressures (P) were estimated for PNHAAs by using the well-known Kamlet-Jacobs equations, based on the theoretical densities (rho) and HOFs. It is found that D and P increase as n ranges from 1 to 6, and PNHAAs with 4-6 nitro groups meet the criteria of an HEDM. When n is over 6, rho of PNHAAs slightly increases; however, the chemical energy of detonation (Q) decreases so greatly that both D and P decrease. The calculations on bond dissociation energies suggest that the N-N bond be the trigger bond during the pyrolysis initiation process of each PNHAA, and with increasing n, N-N bond dissociation energy (E(N-N)) decreases on the whole, that is to say, the relative stability of PNHAAs decreases. All E(N-N)(s) of PNHAAs are more than 30 kcal.mol(-1), which further proves that four PNHAAs with 4-6 nitro groups can be used as the candidates of HEDMs. Considering the synthesis difficulty and the performance as an energetic compound, we finally recommended 2,4,6,8,10-pentanitrohexaazaadamantane as the target HEDM for PNHAAs.  相似文献   

5.
Density function theory (DFT) has been employed to study the geometric and electronic structures of a series of spiro nitramines at the B3LYP/6-31G level. The calculated results agree reasonably with available experimental data. Thermodynamic properties derived from the infrared spectra on the basis of statistical thermodynamic principles are linearly correlated with the number of nitramine groups as well as the temperature. Detonation performances were evaluated by the Kamlet-Jacobs equations based on the calculated densities and heats of formation. It is found that some compounds with the predicted densities of ca. 1.9 g/cm3, detonation velocities over 9 km/s, and detonation pressures of about 39 GPa (some even over 40 GPa) may be novel potential candidates of high energy density materials (HEDMs). Thermal stability and the pyrolysis mechanism of the title compounds were investigated by calculating the bond dissociation energies (BDE) at the B3LYP/6-31G level and the activation energies (E(a)) with the selected PM3 semiempirical molecular orbital (MO) based on the unrestricted Hartree-Fock model. The relationships between BDE, E(a), and the electronic structures of the spiro nitramines were discussed in detail. Thermal stabilities and decomposition mechanisms of the title compounds derived from the B3LYP/6-31G BDE and the UHF-PM3 E(a) are basically consistent. Considering the thermal stability, TNSHe (tetranitrotetraazaspirohexane), TNSH (tetranitrotetraazaspiroheptane), and TNSO (tetranitrotetraazaspirooctane) are recommended as the preferred candidates of HEDMs. These results may provide basic information for the molecular design of HEDMs.  相似文献   

6.
Density function theory (DFT) has been employed to study the geometric and electronic structures of four trinitrate ester including nitroglycerin (NG), butanetriol trinitrate (BTTN), trimethanolethane trinitrate (TMETN) and trimethylolpropane trinitrate (TMPTN) at the B3LYP/6-31G* level. Their IR spectra were obtained and assigned by vibrational analysis. Based on the frequencies scaled by 0.96 and the principle of statistic thermodynamics, the thermodynamic properties were evaluated, which were linearly related with the number of methylene groups as well as the temperature, obviously showing good group additivity. Detonation performances were evaluated by the Kamlet–Jacobs equations based on the calculated densities and heats of formation. It is found that density, detonation velocity, detonation pressure are decrease with the increase of the number methylene groups. Thermal stability and the pyrolysis mechanism of the title compounds were investigated by calculating the bond dissociation energies (BDE) at the B3LYP/6-31G* level. For the nitrate esters, the ONO2 bond is a trigger bond during thermolysis initiation process.  相似文献   

7.
In this study, we explore the possibility that fused polynitrodiazoles act as high energy density materials. Density functional theory calculations at the B3LYP/aug‐cc‐pVDZ level were performed to predict the structure, energy of explosion (≈1.68 kcal g?1), density (≈1.98 g cm?3), detonation velocity (≈9.50 km s?1), and detonation pressure (≈41.50 GPa) of model molecules. The predicted properties have been found to be promising compared with 3,4,5‐trinitro‐1H‐pyrazole, 1,3,5‐trinitro‐1,3,5‐triazinane, and octahydro‐1,3,5,7‐tetranitro‐l,3,5,7‐tetraazocane. The nature of azoles of the molecule presumably determines the geometry, stability, sensitivity, density, and detonation performance. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

8.
Previous studies have shown that the design of cocrystal explosives is one of the most promising approaches to decrease the sensitivity and maintain the detonation performance of existing explosives. As is well‐known, octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) is a high energy density material (HEDM). But the application of HMX is limited, due to its high sensitivity. Thus, an insensitive explosive 5‐nitro‐1,2,4‐triazol‐3‐one (NTO) is proposed as a cocrystal former (CCF) to cocrystallize with HMX in the present work. The binding energies, heat of formations (HOFs), thermodynamic properties, atoms in molecules, and natural bond orbital analysis of four HMX/NTO complexes have been calculated using density functional theory methods, including meta‐hybrid functional (M062X) and dispersion‐corrected density functionals (B97D, ωB97XD). In addition, the crystal structure of HMX/NTO cocrystal has been investigated using Monte Carlo simulation and first principles methods. The HMX/NTO cocrystal is most likely to crystallize in triclinic crystal system with P1 space group, and corresponding cell parameters are Z = 2, a = 9.06 Å, b = 8.19 Å, c = 10.27 Å, α = 81.94°, β = 98.42°, γ = 82.03°, and ρ = 1.92 g/cm3. The detonation velocity and detonation pressure of HMX/NTO cocrystal are 8.73 km/s and 35.14 GPa, respectively, a little lower than those of HMX. Finally, bond dissociation energies (BDEs) of the weakest trigger bond in HMX/NTO complexes are calculated. The results show that HMX/NTO complexes are thermally stable and meet the thermal requirement of HEDMs (BDE > 120 kJ/mol). © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The present study employs density-functional electronic structure methods to investigate the effect of chemical modification at the C5 position of cytosine. A series of experimentally motivated chemical modifications are considered, including alkyl, halogen, aromatic, fused ring, and strong σ and π withdrawing functional groups. The effect of these modifications on cytosine geometry, electronic structure, proton affinities, gas phase basicities, cytosine–guanine base pair hydrogen bond network and corresponding nucleophilicity at guanine are examined. Ultimately, these results play a part in dissecting the effect of endogenous cytosine methylation on the reactivity of neighboring guanine toward carcinogens and DNA alkylating agents.  相似文献   

10.
Based on the full optimized molecular geometric structures at B3LYP/6-31G**, B3LYP/6-31+G**, B3P86/6-31G**, and B3P86/6-31+G** levels, the densities (ρ), detonation velocities (D), and pressures (P) for a series of toluene derivatives, as well as their thermal stabilities, were investigated to look for high energy density compounds (HEDCs). The heats of formation (HOFs) are also calculated via designed isodesmic reactions. The calculations on the bond dissociation energies (BDEs) indicate that the BDEs of the initial scission step are between 48 and 59 kcal/mol, and pentanitrotoluene is the most reactive compound, while 2,4,6-trinitrotoluene is the least reactive compound for toluene derivatives studied. A good linear relationship between BDE/E and impact sensitivity is also obtained. The condensed phase HOFs are calculated for the title compounds. These results would provide basic information for the further studies of HEDCs. The detonation data of pentanitrotoluene show that it meets the requirement for HEDCs.  相似文献   

11.
Nitro derivatives of benzene and aminobenzenes are optimized at the DFT‐B3LYP/6‐31G* level. The heat of formation (ΔHf) and crystal theoretical density (ρ) are estimated to evaluate the detonation properties using the modified Kamlet–Jacobs equations. Thermal stability and the pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDE) at the unrestricted B3LYP/6‐31G* level. The kinetic parameter and the static electronic structural parameters can be used to predict the stability and the relative magnitude of the impact sensitivity of homologues. According to the quantitative standard of the energy and the stability as an HEDC, the title compounds having more than four nitro groups satisfy this requirement. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

12.
The thermal decomposition and the nonisothermal kinetics of the thermal decomposition reaction of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo[3,3,1]onan-3,7-dione (TNPDU) were studied under the nonisothermal condition by differential scanning calorimetry (DSC) and thermogravimetry-derivative thermogravimetry (TG-DTG) methods. The kinetic model function in differential form and the value of Ea and A of the decomposition reaction of TNPDU are f(alpha) = 3(1 - alpha)[-ln(1 - alpha)](2/3), 141.72 kJ mol(-1), and 10(11.99) s(-1), respectively. The critical temperature of thermal explosion of the title compound is 232.58 degrees C. The values of DeltaS(++), DeltaH(++), and DeltaG(++) of this reaction are -15.50 J mol(-1) K(-1), 147.65 kJ mol(-1), and 155.26 kJ mol(-1), respectively. The theoretical investigation on the title compound as a structure unit was carried out by the DFT-B3LYP/6-311++G** method. The IR frequencies and NMR chemical shift were performed and compared with the experimental results. The heat of formation (HOF) for TNPDU was evaluated by designing isodesmic reactions. The detonation velocity (D) and detonation pressure (P) were estimated by using the well-known Kamlet-Jacobs equation, based on the theoretical densities and HOF. The calculation on bond dissociation energy suggests that the N-N bond should be the trigger bond during the pyrolysis initiation process.  相似文献   

13.
Density function theory has been employed to study a series of compounds containing pyridine ring at the B3LYP/6-31G* level. Detonation performance was evaluated by using the Kamlet–Jacobs equations based on the calculated densities and heats of formation. Some compounds have high densities (ca. 1.9 g cm−3) and good performance (detonation velocities over 9 km s−1, detonation pressures about 39 GPa) and may be the potential candidates of high energy density materials. The thermal stability and the pyrolysis mechanism of the title compounds were investigated by the bond dissociation energies and the impact sensitivity predicted. Solvent effect has been investigated and it makes the title compounds more stable in solutions.  相似文献   

14.
Density functional theory calculations were performed to find comprehensive relationships between the structures and performance of a series of highly energetic cyclic nitramines. The isodesmic reaction method was employed to estimate the heat of formation. The detonation properties were evaluated by using the Kamlet-Jacobs equations based on the theoretical densities and HOFs. Results indicate the N-NO(2) group and aza N atom are effective substituents for enhancing the detonation performance. All cyclic nitramines except C11 and C21 exhibit better detonation performance than HMX. The decomposition mechanism and thermal stability of these cyclic nitramines were analyzed via the bond dissociation energies. For most of these nitramines, the homolysis of N-NO(2) is the initial step in the thermolysis, and the species with the bridged N-N bond are more sensitive than others. Considering the detonation performance and thermal stability, twelve derivatives may be the promising candidates of high energy density materials (HEDMs). The results of this study may provide basic information for the further study of this kind of compounds and molecular design of novel HEDMs.  相似文献   

15.
Density functional theory calculations at the B3LYP/aug-cc-pVDZ level have been performed to explore the structure, stability, heat of explosion, density, and the performance properties of amino-, methyl-, and nitroimidazoles. N-Nitroimidazoles have shown lower densities compared with those of C-nitroimidazoles. Detonation properties of title compounds were evaluated by using Kamlet–Jacob semi-empirical equations based on the predicted densities and the calculated heats of detonation. It has been found that some compounds with the calculated densities 2.0 g/cm3, detonation velocities over 9.10 km/s and detonation pressures of about 45 GPa (some even over 50 GPa) may be novel potential high energy materials. The higher performance of nitroimidazole-N-oxides is apparently due to their higher densities (2.0–2.515 g/cm3). Heat of explosion, stability, density, and performance properties are related to the number and relative positions of –NO2, –NH2, and –CH3 groups of the imidazole ring. The designed nitroimidazoles satisfy the criteria of high energy materials.  相似文献   

16.
A new potential enantioselective catalyst derived from ferrocene, 1-{(R)-1-[(S)-2-(diphenylphosphino)ferrocenyl]ethyl}-benzimidazole (DPFEB), was prepared and its absolute structure was characterized by means of single crystal X-ray diffraction. The molar heat capacity of DPFEB was measured by means of temperature modulated differential scanning calorimetry over the temperature range of 200–530 K, and the thermodynamic functions of [H T  − H 298.15] and [S T  − S 298.15] were calculated. Further more, thermogravimetry experiment revealed that DPFEB exhibited a three step thermal decomposition process with the final residual of 28.7%.  相似文献   

17.
The nitro derivatives of phenols are optimized to obtain their molecular geometries and electronic structures at the DFT‐B3LYP/6‐31G* level. Detonation properties are evaluated using the modified Kamlet–Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of nitro and hydroxy groups. Thermal stability and pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDEs) at the unrestricted B3LYP/6‐31G* level. The activation energies of H‐transfer reaction is smaller than the BDEs of all bonds and this illustrates that the pyrolysis of the title compounds may be started from breaking O? H bond followed by the isomerization reaction of H transfer. Moreover, the C? NO2 bond with the smaller bond overlap population and the smaller BDE will also overlap may be before homolysis. According to the quantitative standard of energetics and stability as a high‐energy density compound, pentanitrophenol essentially satisfies this requirement. In addition, we have discussed the effect of the nitro and hydroxy groups on the static electronic structural parameters and the kinetic parameter. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

18.
The ? NH2, ? NO2, ? N3, ? NHNO2, and ? ONO2 substitution derivatives of PYX (2,6‐bis(picrylamino)‐3,5‐dinitropyridine) were studied at the B3LYP/6‐31G** level of density functional theory. The sublimation enthalpies and heats of formation (HOFs) in gas phase and solid state of these compounds were calculated. The theoretical predicted density (ρ), detonation pressure (P), and detonation velocity (D) showed that these derivatives have better detonation performance than PYX. The effects of substituent groups on HOF, ρ, P, and D were discussed. The order of contribution of various groups to P and D was ? ONO2 > ? NO2 > ? NHNO2 > ? N3 > ? NH2. Sensitivity was evaluated using the frontier orbital energies, bond orders, bond dissociation enthalpies (BDEs), and characteristic heights (h50). The trigger bonds in the pyrolysis process for these PYX derivatives may be Ring‐NO2, NH? NO2, or O? NO2 varying with the substituents. The h50 of most compounds are larger than that of CL‐20, and those of ? NH2, ? NO2, and most ? ONO2 derivatives are larger than that of RDX. The BDEs of the trigger bonds of all but the ? ONO2 derivatives are sufficiently large. Taking both detonation performance and sensitivity into consideration, some derivatives of PYX may be good candidates of explosives. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
Based on the full-optimized molecular geometric structures at B3LYP/6-31G* and B3P86/6-31G* levels, the densities (ρ), detonation velocities (D), and pressures (P) for a series of 1,2,3-triazole derivatives, as well as their thermal stabilities, were investigated to look for high energy density compounds (HEDCs). The heats of formation (HOFs) are also calculated via designed isodesmic reactions. The calculations on the bond dissociation energies (BDEs) indicate that the BDEs of the initial scission step are between 53 and 70 kcal/mol, and 4-nitro-1,2,3-triazole is the most reactive compound, while 1-(2′,4′-dinitrophenyl)-5-nitro-1,2,3-triazole is the least reactive compound for 1,2,3-triazole derivatives studied. The condensed phase heats of formation are also calculated for the title compounds. These results would provide basic information for the further studies of HEDCs. The detonation data of 1-(3′,4′-dinitrophenyl)-4-nitro-1,2,3-triazole and 1-(2′,4′-dinitrophenyl)-4-nitro-1,2,3-triazole show that they meet the requirement for HEDCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号