首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an on-the-fly classical trajectory study of the Cl + CH(4)→ HCl + CH(3) reaction using a specific reaction parameter (SRP) AM1 Hamiltonian that was previously optimized for the Cl + ethane reaction [S. J. Greaves et al., J. Phys Chem A, 2008, 112, 9387]. The SRP-AM1 Hamiltonian is shown to be a good model for the potential energy surface of the title reaction. Calculated differential cross sections, obtained from trajectories propagated with the SRP-AM1 Hamiltonian compare favourably with experimental results for this system. Analysis of the vibrational modes of the methyl radical shows different scattering distributions for ground and vibrationally excited products.  相似文献   

2.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

3.
A semiempirical approach is suggested to describe potential-energy surfaces (PESs) of some radical reactions in the zero-differential overlap (ZDO) approximation. An incomplete basis set is used including only frontier (single-filled) radical molecular orbitals (MOs) depending on geometrical parameters. All possible configurations are taken into account. The parameter selection techniques are analyzed. The approach is applied to PES calculation of the CH4 + CH3 · CH3 · + CH4 reaction. Some points of the PES are verified by a nonempirical method using the perturbation theory and taking into account the correlation energy. The relaxation energies are calculated. The one-center parameters are determined nonempirically from the CH3 + CH3 ·, and CH3 energetics. The two-center parameters are found by modeling the CH4 CH3 · + H and C2H6 2CH3 reactions in the same single-orbital approximation. The energy parameters of the reactions considered are overestimated by 10%, whereas the geometrical parameters are under-estimated by 15%. Further, a comparative analysis of the Hartree-Fock solutions and those including correlation interactions (CIs) is given. The variations in the spin and charge densities on the reaction centers are considered.Institute of Chemical Kinetics and Combustion, Academy of Sciences of the USSR, Siberian Branch, Novosibirsk. Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 27, No. 4, pp. 499–506, July–August, 1991. Original article submitted February 10, 1989.  相似文献   

4.
5.
We report a high-quality, ab initio, full-dimensional global potential energy surface (PES) for the Cl((2)P, (2)P(3/2)) + CH(4) reaction, which describes both the abstraction (HCl + CH(3)) and substitution (H + CH(3)Cl) channels. The analytical PES is a least-squares fit, using a basis of permutationally invariant polynomials, to roughly 16,000 ab initio energy points, obtained by an efficient composite method, including counterpoise and spin-orbit corrections for the entrance channel. This composite method is shown to provide accuracy almost equal to all-electron CCSD(T)/aug-cc-pCVQZ results, but at much lower computational cost. Details of the PES, as well as additional high-level benchmark characterization of structures and energetics are reported. The PES has classical barrier heights of 2650 and 15,060 cm(-1) (relative to Cl((2)P(3/2)) + CH(4)(eq)), respectively, for the abstraction and substitution reactions, in good agreement with the corresponding new computed benchmark values, 2670 and 14,720 cm(-1). The PES also accurately describes the potential wells in the entrance and exit channels for the abstraction reaction. Quasiclassical trajectory calculations using the PES show that (a) the inclusion of the spin-orbit corrections in the PES decreases the cross sections by a factor of 1.5-2.5 at low collision energies (E(coll)); (b) at E(coll) ≈ 13,000 cm(-1) the substitution channel opens and the H/HCl ratio increases rapidly with E(coll); (c) the maximum impact parameter (b(max)) for the abstraction reaction is ~6 bohr; whereas b(max) is only ~2 bohr for the substitution; (d) the HCl and CH(3) products are mainly in the vibrational ground state even at very high E(coll); and (e) the HCl rotational distributions are cold, in excellent agreement with experiment at E(coll) = 1280 cm(-1).  相似文献   

6.
The free-energy profile for the Menshutkin-type reaction NH3 + CH3Cl → NH3CH3 + + Cl in aqueous solution is studied using the RISM-SCF method. The effect of electron correlation on the free-energy profile is estimated by the RISM-MP2 method at the HF optimized geometries along the reaction coordinate. Solvation was found to have a large influence on the vibrational frequencies at the reactant, transition state and product; these vibrational frequencies are utilized to calculate the zero-point energy correction of the free-energy profile. The computed barrier height and reaction exothermicity are in reasonable agreement with those of experiment and previous calculations. The change of solvation structure along the reaction path is represented by radial distribution functions between solute-solvent atomic sites. The mechanisms of the reaction are discussed from the view points of solute electronic and solvation structures. Received: 26 June 1998/Accepted: 28 August 1998 / Published online: 2 November 1998  相似文献   

7.
《Chemical physics letters》1986,123(4):331-336
The potential energy surface for the CH4+CH4+ reaction system has been calculated with the ab initio method. A stable complex, responsible for the complex mechanism, has been found but is hard to reach. Each of the two direct mechanisms, hydrogen transfer and proton transfer, has been shown to consist of a combination of electron transfer and hydrogen atom transfer processes.  相似文献   

8.
The O((3)P) + CH(4) reaction has been investigated using the quasi-classical trajectory (QCT) method and an ab initio pseudotriatomic potential energy surface (PES). This has been mainly motivated by very recent experiments which support the reliability of the triatomic modeling even at high collision energy ( = 64 kcal mol(-1)). The QCT results agree rather well with the experiments (translational and angular distributions of products); i.e., the ab initio pseudotriatomic modeling "captures" the essence of the reaction dynamics, although the PES was not optimized for high E(col). Furthermore, similar experiments on the O((3)P) + CD(4) reaction at moderate E(col) (12.49 kcal mol(-1)) have also been of a large interest here and, under these softer reaction conditions, the QCT method leads to results which are almost in quantitative agreement with experiments. The utility of the ab initio pseudotriatomic modeling has also been recognized for other analogous systems (X + CH(4)) but with very different PESs.  相似文献   

9.
《Chemical physics》1986,107(1):9-23
The dipole moment derivatives and the infrared absorption intensities for the isoelectronic, isostructural species NH3, H3O+ and CH3, calculated by ab initio quantum methods within the double harmonic approximation, are reported. The calculations were performed at the SCF, CI and CPA″ levels of theory using basis sets of triple zeta+two polarization functions quality. For the ions H3O+ and CH3, in the absence of adequate experimental information, the calculations are fully ab initio, since the equilibrium geometries as well as the force constants had to be computed. The applicability of the harmonic treatment to systems with inversion potentials is discussed, especially with regard to H3O+. The dipole moment derivatives of the three systems show interesting, regular trends in accordance with the amount of electronic charge associated with the hydrogen atoms.  相似文献   

10.
The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.  相似文献   

11.
The entrance channel potentials of the prototypical polyatomic reaction family X + CH(4) → HX + CH(3) (X = F, Cl, Br, I) are investigated using anion photoelectron spectroscopy and high-level ab initio electronic structure computations. The pre-reactive van der Waals (vdW) wells of these reactions are probed for X = Cl, Br, I by photodetachment spectra of the corresponding X(-)-CH(4) anion complex. For F-CH(4), a spin-orbit splitting (~1310 cm(-1)) much larger than that of the F atom (404 cm(-1)) was observed, in good agreement with theory. This showed that in the case of the F-CH(4) system the vertical transition from the anion ground state to the neutral potentials accesses a region between the vdW valley and transition state of the early-barrier F + CH(4) reaction. The doublet splittings observed in the other halogen complexes are close to the isolated atomic spin-orbit splittings, also in agreement with theory.  相似文献   

12.
Metastable ion decompositions, collision-activated dissociation (CAD), and neutralization-reionization mass spectrometry are utilized to study the unimolecular chemistry of distonic ion ·CH2CH2CH?OH (2) and its enol-keto tautomers CH3CH=CHOH (1 ) and CH3CH2CH=O (3). The major fragmentation of metastable 1–3 is H· loss to yield the propanoyl cation, CH3CH2C≡O+. This reaction remains dominant upon collisional activation, although now some isomeric CH2=CH-CH+ OH is coproduced from all three precursors. The CAD and neutralization-reionization (+NR+) spectra of keto ion 3 are substantially different from those of tautomers 2 and 1. Hence, 3 without sufficient energy for decomposition (i. e. , “stable” 3) does not isomerize to the ther-modynamically more stable ions 2 or 1, and the 1,4-H rearrangement H-CH2CH2CH=O(3 ) → CH2CH2CH+ O-H (2 ) must require an appreciable critical energy. Although the fragment ion abundances in the + NR + (and CAD) spectra of 1 and 2 are similar, the relative and absolute intensities of the survivor ions (recovered C3H6O ions in the +NR+ spectra) are markedly distinct and independent of the internal energy of 1 and 2 . Furthermore, 1 and 2 show different MI spectra. Based on these data, distonic ion 2 does not spontaneously rearrange to enol ion 1 (which is the most stable C3H6O of CCCO connectivity) and, therefore, is separated from it by an appreciable barrier. In contrast, the molecular ions of cyclopropanol (4 ) and allyl alcohol (5 ) isomerize readily to 2 , via ring opening and 1,2-H? shift, respectively. The sample found to generate the purest 2 is α-hydroxy-γ-butyrolactone. Several other precursors that would yield 2 by a least-motion reaction cogenerate detectable quantities of enol ion 1 , or the enol ion of acetone (CH2=C(CH3)OH, 6 ), or methyl vinyl ether ion (CH3OCH=CH 2 , 7 ). Ion 6 is coproduced from samples that contain the —CH2—CH(OH)—CH2— substructure, whereas 7 is coproduced from compounds with methoxy substituents. Compared to CAD, metastable ion characteristics combined with neutralization-reionization allow for a superior differentiation of the ions studied.  相似文献   

13.
The effect of excitation energy on the lifetimes of the charge-transfer-to-solvent (CTTS) states of small (4 ≤ n ≤ 10) iodide-doped water and alcohol clusters was explored using femtosecond time-resolved photoelectron imaging. Excitation of the CTTS state at wavelengths ranging from 272 to 238 nm leads to the formation of the I···(ROH)(n)(-) (R═H-, CH(3)-, and CH(3)CH(2)-) species, which can be thought of as a vibrationally excited bare solvent cluster anion perturbed by an iodine atom. Autodetachment lifetimes for alcohol-containing clusters range from 1 to 71 ps, while water clusters survive for hundreds of ps in this size range. Autodetachment lifetimes were observed to decrease significantly with increasing excitation energy for a particular number and type of solvent molecules. The application of Klots' model for thermionic emission from clusters to I(-)(H(2)O)(5) and I(-)(CH(3)OH)(7) qualitatively reproduces experimental trends and reveals a high sensitivity to energy parametrization while remaining relatively insensitive to the number of vibrational modes. Experimental and computational results therefore suggest that the rate of electron emission is primarily determined by the energetics of the cluster system rather than by details of molecular structure.  相似文献   

14.
The potential energy surfaces of the CF(3)CH═CH(2) + OH reaction have been investigated at the BMC-CCSD level based on the geometric parameters optimized at the MP2/6-311++G(d,p) level. Various possible H (or F)-abstraction and addition/elimination pathways are considered. Temperature- and pressure-dependent rate constants have been determined using Rice-Ramsperger-Kassel-Marcus theory with tunneling correction. It is shown that IM1 (CF(3)CHCH(2)OH) and IM2 (CF(3)CHOHCH(2)) formed by collisional stabilization are major products at 100 Torr pressure of Ar and in the temperature range of T < 700 K (at P = 700 Torr with N(2) as bath gas, T ≤ 900 K), whereas CH(2)═CHOH and CF(3) produced by the addition/elimination pathway are the dominant end products at 700-2000 K. The production of CF(3)CHCH and CF(3)CCH(2) produced by hydrogen abstractions become important at T ≥ 2000 K. The calculated results are in good agreement with available experimental data. The present theoretical study is helpful for the understanding the characteristics of the reaction of CF(3)CH═CH(2) + OH.  相似文献   

15.
The Raman spectra of the carbon—chlorine symmetric stretching mode, ν4, of the Group IVA methylmetal trichlorides (CH3MCl3, M  C, Si, Ge, Sn) were acquired in a number of solvents of varying molecular properties. Non-linear curve fitting procedures were used to separate the four band components resulting from chlorine isotope splitting.The band maxima of the two lighter members of the series were observed to shift to lower frequency with increasing solvent polarizability, indicating the predominance of solute—solvent dispersion forces. In the germanium and tin compounds, on the other hand, the peak frequencies were correlated, instead, with solvent dipole moment. This result is in contrast to earlier studies on the ν1 (CH3 symmetric stretching) vibration, for which dispersion interactions are the dominant frequency displacement mechanism in all four compounds.The bandwidths of the ν4 vibration were found to depend on dipolar interactions in the germanium and tin compounds. However, this correlation was not observed for the two lighter series members, nor for the carbon—chlorine antisymmetric stretching vibration in CH3SnCl3.  相似文献   

16.
17.
A reduced dimensionality quantum scattering method is extended to the study of spin-orbit nonadiabatic transitions in the CH(3) + HCl ? CH(4) + Cl((2)P(J)) reaction. Three two-dimensional potential energy surfaces are developed by fitting a 29 parameter double-Morse function to CCSD(T)/IB//MP2/cc-pV(T+d)Z-dk ab initio data; interaction between surfaces is described by geometry-dependent spin-orbit coupling functions fit to MCSCF/cc-pV(T+d)Z-dk ab initio data. Spectator modes are treated adiabatically via inclusion of curvilinear projected frequencies. The total scattering wave function is expanded in a vibronic basis set and close-coupled equations are solved via R-matrix propagation. Ground state thermal rate constants for forward and reverse reactions agree well with experiment. Multi-surface reaction probabilities, integral cross sections, and initial-state selected branching ratios all highlight the importance of vibrational energy in mediating nonadiabatic transition. Electronically excited state dynamics are seen to play a small but significant role as consistent with experimental conclusions.  相似文献   

18.
The mode selectivity of the H+CH3D→H2+CH2D reaction was studied using a recently developed ten-dimensional time-dependent wave packet method.The reac-tion dynam...  相似文献   

19.
The abstract reaction of CH3SiH3 with H has been studied by using the“direct dynamics”method of variational transition-state theory,which is based on the information on geometries,frequencies and energies calculated by ab initio along the minimum energy path.The rate constants and transmission coefficients were calculated for the temperature range 298~1700K.The result indicates that the variational effect on this reaction is great and the tunneling effect is very obvious at room temperature.The rate constants calculated match well with the experimental value.  相似文献   

20.
The isomerization of CH3S(OH)CH2 to CH3S(O)CH3 in the absence and presence of water has been investigated at the G3XMP2//B3LYP/6-311 + G(2df, p) level. The naked isomerization, the reaction without water, gives the high barrier height (21.56 kcal.mol^-1). Three models are constructed to describe the water influence on the isomerization, that is, water molecules are the catalyst and the microsolvation, and water molecules act as the catalyst and microsolvation simultaneously. Our results show that the isomerization barrier heights of CH3S(OH)CH2 to CH3S(O)CH3 are reduced by 12.32, 11.04, and 7.80 kcal.mol^-1, respectively, when one, two, and three water molecules are performed as catalyst, in contrast to the naked isomerization. Moreover, the rate constants of the isomerization are calculated using the transition state theory with the Wigner tunneling correction over the temperature range of 240-425 K. We find that the rate constant of a single water molecule as the catalyst is 1.58 times larger than the naked isomerization at 325 K, whereas it is slower by 6 orders of magnitude when water molecule serves as the microsolvation at 325 K, compared to naked reaction. So the water-catalyzed isomerization of CH3S(OH)CH2 to CH3S(O)CH3 is predicted to be the key role in lowering the activation energy. The isomerization involving water molecules acting as mierosolvation is unfavorable under atmospheric conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号