首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present new data obtained from the spreading of a series of oil droplets, on top of a hydrophobic grafted silicon substrate, in air and immersed in water. We follow the contact angle and radius dynamics of hexane, dodecane, hexadecane, dibutyl phthalate, and squalane from the first milliseconds to approximately 1 s. Analysis of the images allows us to make several hundred contact angle and droplet radius measurements with great accuracy. The G-Dyna (Seveno et al. Langmuir 2010, 25, 13034) software is then used to fit the data with one of the wetting theories, the molecular-kinetic theory (MKT) (Blake et al. J. Colloid Interface Sci.1969, 30, 421), which takes into account the dissipation at the three-phase zone at the contact line. This theory allows us to extract the coefficient of friction of the contact line, which expresses the relationship between the driving force, that is, the unbalanced Young force, and the contact-line velocity V. It is first shown that the MKT is appropriate to describe the experimental data and then that the contact-line friction is a linear function of the viscosity as theoretically predicted. This is checked for oil-air and oil-water systems. A linear relation between the contact-line friction measured in oil-water systems and the contact-line frictions of the parent single liquid system seems plausible. To the best of our knowledge, this is the first trial to establish a link between the dynamics of wetting in liquid-liquid and in liquid-air systems.  相似文献   

2.
Forced wetting experiments with various liquids were conducted to study the dynamic wetting properties of nylon filament. The molecular-kinetic theory of wetting (MKT) was used to interpret the dynamic contact angle data and evaluate the contact-line friction zeta0 at the microscopic scale. By taking account of the viscosity of the liquid, zeta0 could be related exponentially to the reversible work of adhesion. This clearly establishes an experimental link between the static and dynamic wetting properties of the material. Moreover, statistical analysis of the equilibrium molecular displacement frequency K0 and the length of the displacements lambda reveals that these two fundamental parameters of the MKT are strongly correlated, not only in the linearized form of the theory (valid close to equilibrium) but also when the nonlinear form of the equations has to be considered at higher wetting speeds.  相似文献   

3.
Influence of surface charge on wetting kinetics   总被引:1,自引:0,他引:1  
The wettability of a titania surface, partially covered with octadecyltrihydrosilane, has been investigated as a function of solution pH. The results show that surface charge affects both static wettability and wetting kinetics. The static contact angle decreases above and below the point of zero charge of the titania surface in a Lippman-like manner as the pH is altered. The dependence of dynamic contact angle on velocity is also affected by pH. The molecular-kinetic theory (MKT) is used to interpret the dynamic contact angle data. The frequency of molecular displacement κ(0) strongly varies with surface charge, whereas the mean molecular displacement length λ is essentially unaffected. There is an exponential dependence of contact-line friction upon work of adhesion, which is varied simply by altering the pH.  相似文献   

4.
The static and dynamic wetting properties of self-assembled alkanethiol monolayers of increasing chain length were studied. The molecular-kinetic theory of wetting was used to interpret the dynamic contact angle data and evaluate the contact-line friction on the microscopic scale. Although the surfaces had a similar static wettability, the coefficient of contact-line friction zeta0 increased linearly with alkyl chain length. This result supports the hypothesis of energy dissipation due to a local deformation of the nanometer-thick layer at the contact line.  相似文献   

5.
Samples of sodium polystyrenesulfonate of molecular weights varying in a 20-fold range were synthesized. The hydrodynamic behavior of the samples was studied in a 0.2 M NaCl solution in which the initial polyelectrolyte effects are suppressed. Relationships between the molecular weight and the translational friction coefficient and intrinsic viscosity were obtained. The theory describing the hydrodynamic behavior of wormlike chains with taking into account both the percolation effects and the excluded-volume effects was applied to estimation of the length of the statistical segment and the cross section of the sodium polystyrenesulfonate molecules in 0.2 M NaCl solution.  相似文献   

6.
Several theories deal with the spreading kinetics of liquids on solid substrate, most of which relate the rate of spreading to the surface tension and the viscosity of the liquid. Measurements of the spreading of a number of liquids exhibiting a wide range of surface tension and viscosity on dry soda-lime glass have been carried out to validate the proposed models. The measurements used a small droplet of constant volume to minimize gravitational effects. The contact radius was acquired as a function of time by an image analysis system. It was noted that power law theories describe the spreading rate for silicone oil on glass. However, significant departures were noted in the case of other liquids. Mechanistic considerations of our data suggest that equal volume droplets of similar surface tension and of diverse viscosity spread to the same area but at different rates. On the other hand, the spreading rate of glycerine, which exhibits incomplete spreading on glass, and that of silicone oil, with comparable viscosity behave similarly. These observations seemingly support the view that surface tension acts to retain the spherical shape of the droplet, whereas the difference between the solid-liquid and solid-vapor interfacial energies acts to enlarge the contact area. In the meantime, viscous dissipation acts to retard the spreading rate, past a constant rate regime.  相似文献   

7.
Dielectric measurements were made on some methyl methacrylate (MMA)-related polymers in dilute solution, in the frequency range of 1–150 MHz. Effects of the solvent viscosity upon the relaxation behavior were carefully examined. The dielectric relaxation of MMA–styrene copolymers with a high content of MMA units as well as that of the MMA–α-methylstyrene copolymer was little affected by the solvent viscosity. With the aid of Kramers'rate constant for small friction, it was found that their dipolar relaxation is very similar to that caused by the internal rotation of a flexible side-chain. On the other hand, MMA–styrene copolymer with a low content of MMA units showed a diffusion-controlled relaxation process, which can be interpreted in terms of Kramers' theory for large friction. In the latter case, the dipolar relaxation appears to reflect a molecular motion such as sweeping out solvent molecules. These results indicate that it is not the dipole itself but its environment, or rather the local molecular structure containing dipoles, that principally controls the relaxation process. On this basis, we propose a criterion, for quantitatively distinguishing the two relaxation mechanisms from each other.  相似文献   

8.
The association of two proteins is preceded by a mutual diffusional search in solution. The role of translational and rotational diffusion in this process has been studied theoretically for many years. However, systematic experimental verification of theoretical results is still lacking. We report here measurements of association rates of the proteins beta-lactamase (TEM) and beta-lactamase inhibitor protein (BLIP) in solutions of glycerol and poly(ethylene glycol) of increasing viscosity. We also measured translational and rotational diffusion in the same solutions, using fluorescence correlation spectroscopy and fluorescence anisotropy, respectively. It is found that in glycerol both translational and rotational diffusion rates are inversely dependent on viscosity, as predicted by the classical Stokes-Einstein relations, while the association rate depends nonlinearly on viscosity. In contrast, the association rate depends only weakly on the viscosity of the polymer solutions, which results in a similar weak dependence of k(on) on viscosity. The data are modeled using the theory of diffusion-limited association. Deviations from the theory are explained by a short-range solute-induced repulsion between the proteins in glycerol solution and an attractive depletion interaction generated by the polymers. These results open the way to the creation of a unified framework for all nonspecific effects involved in the protein association process, as well as to better theoretical understanding of these effects. Further, they reflect on the complex factors controlling protein association within the crowded environment of cells and suggest that a high concentration of macromolecules does not significantly impede protein association.  相似文献   

9.
The effect of a low molecular weight nonionic surfactant and an acrylic associative thickener on the rheology of polyacrylamide in aqueous glycerol solutions under steady shear was experimentally investigated. The nonionic surfactant (Tween20), associative thickener (Acrysol TT935) and polyacrylamide (Separan AP30) underwent complex molecular interactions in solution as reflected by rheological measurements. The surfactant also interacted with the glycerol solvent. The addition of surfactant in aqueous glycerol solutions reduced the surface tension, as well as the solution viscosity, at low surfactant concentration. The solution viscosity went through a minimum at certain surfactant concentration, depending on the composition of glycerol/water mixture, before increasing again. Similar behavior was found when the surfactant was added to the polyacrylamide solution, except there was an initial increase in the viscosity before the reduction. The associative thickener, Acrysol TT935 (an anionic acrylic emulsion copolymer) exhibited a strong affinity with polyacrylamide in solution, as indicated by a sharp increase in the solution viscosity. The dilute polyacrylamide solution became highly elastic in the presence of either the nonionic surfactant on the associative thickener. A threestage model was proposed to describe the surfactant/thickener/polymer interactions.  相似文献   

10.
We report a numerical investigation of the viscoelastic behavior in models for steric repulsive and short-ranged attractive colloidal suspensions, along different paths in the attraction strength vs packing fraction plane. More specifically, we study the behavior of the viscosity (and its frequency dependence) on approaching the repulsive glass, the attractive glass, and in the reentrant region where viscosity shows a nonmonotonic behavior on increasing attraction strength. On approaching the glass lines, the increase of the viscosity is consistent with a power-law divergence with the same exponent and critical packing fraction previously obtained for the divergence of the density fluctuations. Based on mode-coupling calculations, we associate the increase of the viscosity with specific contributions from different length scales. We also show that the results are independent of the microscopic dynamics by comparing Newtonian and Brownian simulations for the same model. Finally, we evaluate the Stokes-Einstein relation approaching both glass transitions, finding a clear breakdown which is particularly strong for the case of the attractive glass.  相似文献   

11.
One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 A? as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 A? over the same range. The waiting time distribution is exponential at all investigated temperatures, ruling out significant dynamical heterogeneity. However, a simulation at 238 K reveals a small but significant dynamical heterogeneity. The macroscopic diffusion coefficient deduced from the QENS data agrees quantitatively with NMR and tracer results. We compare our QENS analysis with existing approaches, arguing that the apparent dynamical heterogeneity implied by stretched exponential fitting functions results from the failure to distinguish intrabasin (L) from interbasin (J) structural dynamics. We propose that the apparent dynamical singularity at ~220 K corresponds to freezing out of J dynamics, while the calorimetric glass transition corresponds to freezing out of L dynamics.  相似文献   

12.
A quantitative theory of hydrodynamic interactions in unentangled polymer melts and concentrated solutions is presented. The study is focussed on the pre-Rouse transient time regimes (t < τ(R), the Rouse relaxation time) where the hydrodynamic response is governed mainly by the viscoelastic effects. It is shown that transient viscoelastic hydrodynamic interactions are not suppressed (screened) at large distances and are virtually independent of polymer molecular mass. A number of transient regimes of unusual and qualitatively different behavior of isotropic and anisotropic hydrodynamic response functions are elucidated. The regimes are characterized in terms of two main length-scale dependent characteristic times: momentum spreading time τ(i) ∝ r(4∕3) and viscoelastic time τ(?) ∝ r(4). It is shown that for t > τ(i) the viscoelastic hydrodynamic interactions can be described in terms of the time or length scale dependent effective viscosity which, for t < τ(R) and/or for r < R(coil), turns out to be much lower than the macroscopic "polymer" viscosity η(m). The theory also involves a quantitative analysis of the length-scale dependent stress relaxation in polymer melts. The general predictions for hydrodynamic interactions in thermostated systems with Langevin friction are obtained as well.  相似文献   

13.
Transport properties of polymer solutions at finite concentration are derived in the partial draining case by formulating a static version of the theory given by Freed and Edwards (FE) for unentangled concentrated polymer solution. The method follows the Kirkwood—Riseman theory for infinitely dilute solutions: the dynamics of the polymer are ignored apart from the overall rotation or translation of the chain and the solvent velocity is given by the Navier—Stokes equations perturbed by point friction forces. The concentration dependence of viscosity and translational friction coefficient of finite chains obtained by numerical calculations are compared with the results of the FE closed-form solution. It is shown that the screening of the hydrodynamic interaction approximately follows Debye-like behavior in the entire range of concentration. The progressive balancing of the increasing intramolecular hydrodynamic interaction with its reduction due to the screening effects, as the molecular weight increases, is well evidenced by comparing results obtained at constant number concentration for different chain lengths.  相似文献   

14.
高分子动力学的单链模型   总被引:1,自引:0,他引:1  
高分子单链模型是高分子稀溶液理论研究的基本模型.对其进行深入地分析,不仅有助于解决高分子稀溶液体系中溶液黏度和分子链扩散等基本问题,而且能够增进人们对高分子链结构与溶液性质间关联性的理解.虽然基于经典连续性介质力学的流体动力学理论可以定性,甚至半定量地获得稀溶液的一些重要性质,但是,随着科学技术的发展,人们从分子水平上建立了许多描述高分子稀溶液性质的模型和理论,期望能够定量地描述高分子稀溶液的性质.本文以高分子稀溶液中3个典型的单链模型为例(包括:不含流体力学相互作用的Rouse模型、含二体流体力学相互作用的Zimm模型和含多体流体力学相互作用的部分穿透球模型),综述高分子稀溶液的重要性质,并详细地给出其动力学方程的推导过程及其重要的研究进展.特别是,对于Rouse模型,本文还将其预言结果拓展到了短链高分子流体体系;此外,还介绍了这一领域的关键科学问题、发展前景和研究方向.  相似文献   

15.
The dynamics of polymeric liquids and mixtures spreading on a solid surface have been investigated on completely wetting and partially wetting surfaces. Drops were formed by pushing the test liquid through a hole in the underside of the substrate, and the drop profiles were monitored as the liquid wet the surface. Silicon surfaces coated with diphenyldichlorosilane (DPDCS) and octadecyltrichlorosilane (OTS) were used as wetting and partial wetting surfaces, respectively, for the fluids we investigated. The response under complete and partial wetting conditions for a series of polypropylene glycols (PPG) with different molecular weights and the same surface tension could be collapsed onto a single curve when scaling time based on the fluid viscosity, the liquid-vapor surface tension, and the radius of a spherical drop with equivalent volume. A poly(ethylene glycol) (PEG300) and a series of poly(ethylene oxide-rand-propylene oxide) copolymers did not show the same viscosity scaling when spread on the partially wetting surface. A combined model incorporating hydrodynamic and molecular-kinetic wetting models adequately described the complete wetting results. The assumptions in the hydrodynamic model, however, were not valid under the partial wetting conditions in our work, and the molecular-kinetic model was chosen to describe our results. The friction coefficient used in the molecular-kinetic model exhibited a nonlinear dependence with viscosity for the copolymers, indicating a more complex relationship between the friction coefficient and the fluid viscosity.  相似文献   

16.
The mechanism of non-Newtonian behavior for flow from the lower to the upper Newtonian region is explained by a modification of Graessley's theory. In the theory proposed here, a viscosity ηfric, which is based on friction between polymer segments and is almost shear-independent, is introduced in addition to Graessley's entanglement viscosity ηent, which decreases with increasing shear rate. The theory is applied to previously obtained data on steady flow of polydimethylsiloxanes of different molecular weights. The agreement between calculated and experimental results is good. In polymers with the molecular weight above the critical molecular weight for entanglement Mc, the major contribution to viscosity near zero shear rate is ηent. As the shear rate increases, the flow curve has an inflection where ηfric cannot be disregarded in comparison with ηent. In the upper Newtonian region, ηfric has more influence on the viscosity than ηent. The theory can also explain the experimental results on flow of polymers with molecular weight below Mc, which were shown to be slightly non-Newtonian in the previous paper.  相似文献   

17.
In the present study, solvents effects on the structure of collagen have been examined by circular dichroism and their interfacial tension at glass/liquid and Teflon/liquid. Changes in the conformations of the protein have been analyzed after equilibration with aqueous solutions of monohydric and polyhydric alcohols like methanol, ethanol, n-propanol, propane-2-diol and glycerol. The results from viscosity and Circular dichroism (CD) spectra suggest a clear distinction in the structural changes for collagen with monohydric alcohols as against polyhydric ones. The surface tension and interfacial tension at glass (high surface energy, HFSE) and Teflon (Low surface energy, LSFE) reflect similar differences between the monohydric and polyhydric alcohols. Studies on the interfacial energy of the adsorbed protein at glass/solution interface compared to that of Teflon/solution interface show that the water structure near glass gets perturbed leading to an increase in the average free energy of the bulk water phase and a reduction in hydrophobic effect near the glass. The results suggest that the different solvents alter the hydrophobic effect on the hydrated protein to different extent and thus influence folding equilibrium of the protein without directly interacting with it. Polyhydric alcohols seem to favor the native collagen structure while monohydric alcohols enhance it.  相似文献   

18.
Here, we develop a framework for a molecular level understanding of the celebrated Stokes-Einstein-Debye (SED) formula. In particular, we explore reasons behind the surprising success of the SED model in describing dipolar solute rotation in complex polar media. Relative importance of solvent viscosity and solute-solvent dipolar interaction is quantified via a self-consistent treatment for the total friction on a rotating solute where the hydrodynamic contribution is modified by the friction arising from the longer ranged solute-solvent dipolar interaction. Although the solute-solvent dipolar coupling is obtained via the Mori-Zwanzig formalism, the inclusion of solvent structure via the wave vector dependent viscosity in the hydrodynamic contribution incorporates solvent molecularity in the present theory. This approach satisfactorily describes the experimental rotation times measured using a dipolar solute, coumarin 153 (C153), in protic and aprotic polar liquids, and more importantly, provides microscopic explanation for insignificant contribution of electrical interactions on solute rotation, in contrast to the substantial role played by the translational dielectric friction in the context of ionic mobility. It is also discussed on how the present theory can be suitably extended to study the rotation of a realistic solute in media other than dipolar solvents.  相似文献   

19.
EFFECT OF ADSORPTION ON THE VISCOSITY OF DILUTE POLYMER SOLUTION*   总被引:1,自引:0,他引:1  
Careful measurements of the dilute solution viscosities of polyethylene glycol and polyvinylalcohol in water were carried out. The reduced viscosities of both polymer solutions plot upward curves atextremely dilute concentration levels similar to the phenomena observed for many polymer solutions in theearly 1950's. Upon observation of the changes of the flow times of pure water in and the wall surfacewettability of the viscometer after measuring solution viscosity, a view was formed that the observed viscosityabnormality at extremely dilute concentration regions is solely due to the effect of adsorption of polymerchains onto the wall surface of viscometer. A theory of adsorption effect based on the Langmuir isothermswas proposed and a mathematical analysis for data treatment was performed. The theory could adequatelydescribe the existing viscosity data. It seems necessary to correct the viscosity result of dilute polymersolutions measured by glass capillary viscometer by taking into account the effect of adsorption in all cases.  相似文献   

20.
采用分子模拟方法研究了正交晶系冰晶(020)生长面在不同浓度甘油水溶液中的生长情况. 通过统计分析氢键数、 密度分布函数、 均方根偏差和原子间径向分布函数研究了水分子和甘油分子的动态行为. 结果表明, 甘油分子在水溶液中可与水分子形成大量氢键, 这使水分子间的氢键作用受到抑制, 降低了水分子的扩散性, 致使冰晶不易成核和生长; 另外, 一些甘油分子可代替水分子吸附在晶面上, 甚至占据晶格位点, 这种行为打破了冰晶的对称性并且降低了冰晶的生长速率. 因此, 甘油可同时在晶面和液相中抑制冰晶的生长.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号