首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The thermal stability and conformational dynamics of DNA hairpin and dumbbell conjugates having short A-tract base pair domains connected by tri- or hexa(ethylene glycol) linkers is reported. The formation of stable base-paired A-tract hairpins having oligo(ethylene glycol) linkers requires a minimum of four or five A-T base pairs. The formation of base-paired dumbbells having oligo(ethylene glycol) linkers by means of chemical ligation of nicked dumbbells requires a minimum of two A-T base pairs on either side of the nick. Molecular modeling indicates that the hexa(ethylene glycol) linker is sufficiently long to permit formation of strain-free loop regions and B-DNA base pair domains. In contrast, the tri(ethylene glycol) is too short to permit Watson-Crick base pairing between the bases attached to the linker. The shorter linker distorts the duplex, resulting in fluxional behavior in which the base pairs adjacent to the linker and at the open end of the hairpin dissociate on the nanosecond time scale. The loss of interstrand binding energy caused by these fluctuations leads to a difference of approximately 5 degrees C in melting temperature between EG3 and EG6 hairpins. An analysis of the fluxional behavior of the EG3 adjacent base-pair has been used to study the pathways for base flipping and base stacking, including the identification of rotated base (partially flipped) intermediates that have not been described previously for A-T base pairs.  相似文献   

2.
The self-assembly of DNA dumbbell conjugates possessing hydrophobic perylenediimide (PDI) linkers separated by an eight-base pair A-tract has been investigated. Cryo-TEM images obtained from dilute solutions of the dumbbell in aqueous buffer containing 100 mM NaCl show the presence of structures corresponding to linear end-to-end assemblies of 10-30 dumbbell monomers. The formation of assemblies of this size is consistent with analysis of the UV-vis and fluorescence spectra of these solutions for the content of PDI monomer and dimer chromophores. Assembly size is dependent upon the concentration of dumbbell and salt as well as the temperature. Kinetic analysis of the assembly process by means of salt-jump stopped-flow measurements shows that it occurs by a salt-triggered isodesmic mechanism in which the rate constants for association and dissociation in 100 mM NaCl are 3.2 × 10(7) M(-1)s(-1) and 1.0 s(-1), respectively, faster than the typical rate constants for DNA hybridization. TEM and AFM images of samples deposited from solutions having higher concentrations of dumbbell and NaCl display branched assemblies with linear regions >1 μm in length and diameters indicative of the formation of small bundles of dumbbell end-to-end assemblies. These observations provide the first example of the use of hydrophobic association for the assembly of small DNA duplex conjugates into supramolecular polymers and larger branched aggregates.  相似文献   

3.
The synthesis, steady-state spectroscopy, and transient absorption spectroscopy of DNA conjugates possessing both stilbene electron donor and electron acceptor chromophores are described. These conjugates are proposed to form nicked DNA dumbbell structures in which a stilbenedicarboxamide acceptor and stilbenediether donor are separated by variable numbers of A-T or G-C base pairs. The nick is located either adjacent to one of the chromophores or between two of the bases. Thermal dissociation profiles indicate that stable structures are formed possessing as few as two A-T base pairs. Circular dichroism (CD) spectra in the base pair region are characteristic of B-DNA duplex structures, whereas CD spectra at longer wavelengths display two bands attributed to exciton coupling between the two stilbenes. The sign and intensity of these bands are dependent upon both the distance between the chromophores and the dihedral angle between their transition dipoles [Deltaepsilon approximately Rda(-2) sin(2theta)]. Pulsed laser excitation of the stilbenediamide results in creation of the acceptor-donor radical ion pair, which decays via charge recombination. The dynamics of charge separation and charge recombination display an exponential distance dependence, similar to that observed previously for systems in which guanine serves as the electron donor. Unlike exciton coupling between the stilbenes, there is no apparent dependence of the charge-transfer rates upon the dihedral angle between donor and acceptor stilbenes. The introduction of a single G-C base pair between the donor and acceptor results in a change in the mechanism for charge separation from single step superexchange to hole hopping.  相似文献   

4.
5.
The structures and proton‐coupled behavior of adenine–thymine (A‐T) and a modified base pair containing a thymine isostere, adenine–difluorotoluene (A‐F), are studied in different solvents by dispersion‐corrected density functional theory. The stability of the canonical Watson–Crick base pair and the mismatched pair in various solvents with low and high dielectric constants is analyzed. It is demonstrated that A‐F base pairing is favored in solvents with low dielectric constant. The stabilization and conformational changes induced by protonation are also analyzed for the natural as well as the mismatched base pair. DNA sequences capable of changing their sequence conformation on protonation are used in the construction of pH‐based molecular switches. An acidic medium has a profound influence in stabilizing the isostere base pair. Such a large gain in stability on protonation leads to an interesting pH‐controlled molecular switch, which can be incorporated in a natural DNA tract.  相似文献   

6.
The dynamic structure and potential energy surface of adenine...thymine and guanine...cytosine base pairs and their methylated analogues interacting with a small number (from 1 to 16 molecules) of organic solvents (methanol, dimethylsulfoxide, and chloroform) were investigated by various theoretical approaches starting from simple empirical methods employing the Cornell et al. force field to highly accurate ab initio quantum chemical calculations (MP2 and particularly CCSD(T) methods). After the simple molecular dynamics simulation, the molecular dynamics in combination with quenching technique was also used. The molecular dynamics simulations presented here have confirmed previous experimental and theoretical results from the bulk solvents showing that, whereas in chloroform the base pairs create hydrogen-bonded structures, in methanol, stacked structures are preferred. While methanol (like water) can stabilize the stacked structures of the base pairs by a higher number of hydrogen bonds than is possible in hydrogen-bonded pairs, the chloroform molecule lacks such a property, and the hydrogen-bonded structures are preferred in this solvent. The large volume of the dimethylsulfoxide molecule is an obstacle for the creation of very stable hydrogen-bonded and stacked systems, and a preference for T-shaped structures, especially for complexes of methylated adenine...thymine base pairs, was observed. These results provide clear evidence that the preference of either the stacked or the hydrogen-bonded structures of the base pairs in the solvent is not determined only by bulk properties or the solvent polarity but rather by specific interactions of the base pair with a small number of the solvent molecules. These conclusions obtained at the empirical level were verified also by high-level ab initio correlated calculations.  相似文献   

7.
The dynamic structure of all ten possible nucleic acid (NA) base pairs and methylated NA base pairs hydrated by a small number of water molecules (from 1 to 16) was determined by using molecular dynamics simulations in the NVE microcanonical and NVT canonical ensembles with the Cornell force field (W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. E. Caldwell, P. Kollman, J. Am. Chem. Soc. 1995, 117, 5179). The presence of one water molecule does not affect the structure of any hydrogen-bonded (H-bonded) nonmethylated base pair. An equal population of H-bonded and stacked structures of adenine...adenine, adenine...guanine and adenine... thymine pairs is reached if as few as two water molecules are present, while obtaining equal populations of these structures in the case of adenine...cytosine, cytosine...thymine, guanine... guanine and guanine...thymine required the presence of four water molecules, and in the case of guanine...cytosine, six. A comparable population of planar, H-bonded and stacked structures for cytosine...cytosine and thymine... thymine base pairs was only obtained if at least eight water molecules hydrated a pair. Methylation of bases changed the situation dramatically and stacked structures were favoured over H-bonded ones even in the absence of water molecules in most cases. Only in the case of methyl cytosine...methyl cytosine, methyl guanine...methyl guanine and methyl guanine...methyl cytosine pairs were two, two or six water molecules, respectively, needed in order to obtain a comparable population of planar, H-bonded and stacked structures. We believe that these results give clear evidence that the preferred stacked structure of NA base pairs in the microhydrated environment, and also apparently in a regular solvent, is due to the hydrophilic interaction of a small number of water molecules. In the case of methylated bases, it is also due to the fact that the hydrogen atoms most suitable for the formation of H-bonds have been replaced by a methyl group. A preferred stacked structure is, thus, not due to a hydrophobic interaction between a large bulk of water molecules and the base pair, as believed.  相似文献   

8.
Ab initio molecular orbital calculations have been performed to determine the structures and stabilization energies of the A---T and G---C base pairs and their complexes with H+ and Li+, H+ and Li+ association stabilizes the A---T pair except for Li+ association at O4 in thymine. Protonation of thymine stabilizes the A---T pair to a greater extent than protonation of adenine. The association of H+ and Li+ with guanine stabilizes the G---C pair, but protonation of cytosine destabilizes G---C. Changes in the structures of the hydrogen bonds in the A---T and G---C pairs reflect changes in hydrogen bond strengths.  相似文献   

9.
The structure and properties of 18 hairpin-forming bis(oligonucleotide) conjugates possessing stilbene diether linkers are reported. Conjugates possessing bis(2-hydroxyethyl)stilbene 4,4'-diether linkers form the most stable DNA hairpins reported to date. Hairpins with as few as two T:A base pairs or four noncanonical G:G base pairs are stable at room temperature. Increasing the length of the hydroxyalkyl groups results in a decrease in hairpin thermal stability. On the basis of the investigation of their circular dichroism spectra, all of the hairpins investigated adopt B-DNA structures, except for a hairpin with a short poly(G:C) stem which forms a Z-DNA structure. Both the strong fluorescence of the stilbene diether linkers and their trans-cis photoisomerization are totally quenched in hairpins possessing neighboring T:A and G:C base pairs. Quenching is attributed to an electron-transfer mechanism in which the singlet stilbene serves as an electron donor and T or C serves as an electron acceptor. In contrast, in denatured hairpins and hairpins possessing neighboring G:G base pairs the stilbene diether linkers undergo efficient photoisomerization.  相似文献   

10.
Synthetic conjugates possessing bis(2-hydroxyethyl)stilbene-4,4'-diether linkers (Sd2) form the most stable DNA hairpins reported to date. Factors that affect stability are length and flexibility of the linkers and pi-stacking of the stilbene moiety on the adjacent base pair. The crystal structure of the hairpin d(GT(4)G)-Sd2-d(CA(4)C) was determined at 1.5 A resolution. The conformations of the two molecules in the asymmetric unit differ both in the linker and the stem portions. One of them shows a planar stilbene that is stacked on the adjacent G:C base pair. The other displays considerable rotation between the phenyl rings and an unprecedented edge-to-face orientation of stilbene and base pair. The observation of considerable variations in the conformation of the Sd moiety in the crystal structure allows us to exclude restriction of motion as the reason for the absence of Sd photoisomerization in the hairpins. Conformational differences in the stem portion of the two hairpin molecules go along with different Mg(2+) binding modes. Most remarkable among them is the sequence-specific coordination of a metal ion in the narrow A-tract minor groove. The crystal structure provides unequivocal evidence that a fully hydrated Mg(2+) ion can penetrate the narrow A-tract minor groove, causing the groove to further contract. Overall, the structural data provide a better understanding of the origins of hairpin stability and their photochemical behavior in solution.  相似文献   

11.
The incorporation of synthetic nucleoside analogues into DNA duplexes provides a unique opportunity to probe both structure and function of nucleic acids. We used 1H and 19F NMR and molecular dynamics calculations to determine the solution structures of two similar DNA decamer duplexes, one containing a central G-T mismatched or "wobble" base pair, and one in which the thymine in this base pair is replaced by difluorotoluene (a thymine isostere) creating a G-F pair. Here, we show that the non-hydrogen-bonding G-F pair stacks relatively well into the helix and that the distortions caused by each non-Watson-Crick G-T or G-F base pair are quite localized to a three base pair site around the mismatch. A detailed structural analysis reveals that the absence of hydrogen bonding introduces more dynamic motion into the G-F pair relative to G-T and permits the G-F pair to exhibit stacking and conformational features characteristic of both a Watson-Crick base pair (on the guanine containing strand) and a wobble base pair (on the strand containing the difluorotoluene). We used these results to posit a rationale for recognition and repair of mismatch sites in DNA.  相似文献   

12.
The formation of cyclobutane pyrimidine dimers between adjacent thymines by UV radiation is thought to be the first event in a cascade leading to skin cancer. Recent studies showed that thymine dimers are fully formed within 1 ps of UV irradiation, suggesting that the conformation at the moment of excitation is the determining factor in whether a given base pair dimerizes. MD simulations on the 50 ns time scale are used to study the populations of reactive conformers that exist at any given time in T18 single-strand DNA. Trajectory analysis shows that only a small percentage of the conformations fulfill distance and dihedral requirements for thymine dimerization, in line with the experimentally observed quantum yield of 3%. Plots of the pairwise interactions in the structures predict hot spots of DNA damage where dimerization in the ssT18 is predicted to be most favored. The importance of hairpin formation by intra-strand base pairing for distinguishing reactive and unreactive base pairs is discussed in detail. The data presented thus explain the structural origin of the results from the ultrafast studies of thymine dimer formation.  相似文献   

13.
The switching properties, gelation behavior, and self-organization of a cholesterol-stoppered bistable [2]rotaxane containing a cyclobis(paraquat-p-phenylene) ring and tetrathiafulvalene/1,5-dioxynaphthalene recognition units situated in the rod portion of the dumbbell component have been investigated by electrochemical, spectroscopic, and microscopic means. The cyclobis(paraquat-p-phenylene) ring in the [2]rotaxane can be switched between the tetrathiafulvalene and 1,5-dioxynaphthalene recognition units by addressing the redox properties of the tetrathiafulvalene unit. The organogels can be prepared by dissolving the [2]rotaxane and its dumbbell precursor in a CH2Cl2/MeOH (3:2) mixed solvent and liquified by adding the oxidant Fe(ClO4)3. Direct evidence for the self-organization was obtained from AFM investigations which have shown that both of the [2]rotaxane and its dumbbell precursor form linear superstructures which we propose are helical in nature.  相似文献   

14.
Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5‐dioxynaphthalene units, and terminated by 2,6‐diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat‐p‐phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well‐known copper(I)‐catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne‐bearing stopper precursors was employed during the final kinetically controlled template‐directed synthesis of the five oligorotaxanes, which were characterized subsequently by 1H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low‐temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C? H???O and π–π stacking interactions between the π‐electron‐deficient bipyridinium units in the rings and the π‐electron‐rich 1,5‐dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer‐like nature have received further support from a solid‐state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.  相似文献   

15.
Cis-syn thymine dimers are the major photoproducts of DNA and are the principal cause of mutations induced by sunlight. To better understand the nature of base pairing with cis-syn thymine dimers, we have synthesized a decamer oligodeoxynucleotide (ODN) containing a cis-syn thymine dimer labeled at the N3 of both T's with 15N by two efficient routes from [3-15N]-thymidine phosphoramidite. In the postsynthetic irradiation route, an ODN containing an adjacent pair of [3-15N]-labeled T's was irradiated and the cis-syn dimer-containing ODN isolated by HPLC. In the mixed building block route, a mixture of cis-syn and trans-syn dimer-containing ODNs was synthesized from a mixture of [3-15N]-labeled thymine dimer phosphoramidites after which the cis-syn dimer-containing ODN was isolated by HPLC. The N3-nitrogen and imino proton signals of an (15)N-labeled thymine dimer-containing decamer duplex were assigned by 2D 1H-15N heterocorrelated HSQC NMR spectroscopy, and the 15N-1H coupling constant was found to be 1.8 Hz greater for the 5'-T than for the 3'-T. The larger coupling constant is indicative of weaker H-bonding that is consistent with the more distorted nature of the 5'-base pair found in solution state NMR and crystallographic structures.  相似文献   

16.
The dehydrogenated radicals and anions of Watson-Crick adenine-thymine (A-T) base pair have been investigated by the B3LYP/DZP++ approach. Calculations show that the dehydrogenated radicals and anions have relatively high stabilities compared with the single base adenine and thymine. The electron attachment to the A-T base pair and its derivatives significantly modifies the hydrogen bond interactions and results in remarkable structural changes. As for the dehydrogenated A-T radicals, they have relatively high electron affinities and different dehydrogenation properties with respect to their constituent elements. The relatively low-cost hydrogen eliminations correspond to the (N9)-H (adenine) and (N1)-H (thymine) bonds cleavage. Both dehydrogenation processes have Gibbs free energies of reaction DeltaG degrees of 13.4 and 17.2 kcal mol-1, respectively. The solvent water exhibits significant effect on electron attachment and dehydrogenation properties of the A-T base pair and its derivatives. In the dehydrogenating process, the anionic A-T fragment gradually changes its electronic configuration from pi* to sigma* state, like the single bases adenine and thymine.  相似文献   

17.
Adiabatic electron affinities (AEAs) of the adenine-thymine (AT) base pair surrounded by 5 and 13 water molecules have been studied by density functional theory (DFT). Geometries of neutral AT x nH2O and anionic (AT x nH2O)- complexes (n = 5 and 13) were fully optimized, and vibrational frequency analysis was performed at the B3LYP/6-31+G** level of theory. The optimized structures of the neutral (AT x nH2O) and (AT x nH2O)- complexes were found to be somewhat nonplanar. Some of the water molecules are displaced away from the AT ring plane and linked with one another by hydrogen bonds. The optimized structures of the complexes are found to be in a satisfactory agreement with the observed experimental and molecular dynamics simulation results. In the optimized anionic complexes, the thymine (T) moiety was found to be puckered, whereas the adenine (A) moiety remained almost planar. Natural population analysis (NPA) performed using the B3LYP/6-31+G** method shows that the thymine moiety in the anionic (AT x nH2O)- complexes (n = 5 and 13) has most of the excess electronic charge, i.e., approximately -0.87 and approximately -0.81 (in the unit of magnitude of the electronic charge), respectively. The zero-point energy corrected adiabatic electron affinities of the hydrated AT base pair were found to be positive both for n = 5 and 13 and have the values of 0.97 and 0.92 eV, respectively, which are almost three times the AEA of the AT base pair. The results show that the presence of water molecules appreciably enhances the EA of the base pair.  相似文献   

18.
DNA-based logic gates promote the development of molecular computing and show enormous potential in the fields of nanotechnology and biotechnology. Dumbbell oligonucleotides(DNA) with poly-thymine(poly-T) loops and a nicked random double strand have been demonstrated to be an efficient template for the formation of fluorescent copper nanoclusters(Cu NCs) in our previous work. Herein, a new platform technology is presented with which to construct molecular logic gates by employing Cu NCs probe as...  相似文献   

19.
A C-nucleoside with 6-phenyl-1H-carbazole as the base moiety has been synthesized and incorporated in the middle of an oligonucleotide. Mercuration of this modified residue at positions 1 and 8 gave the first example of an oligonucleotide featuring a monofacial dinuclear organometallic nucleobase. The dimercurated oligonucleotide formed stable duplexes with unmodified oligonucleotides placing either cytosine, guanine, or thymine opposite to the organometallic nucleobase. A highly stabilizing (ΔTm=7.3 °C) HgII-mediated base pair was formed with thymine. According to DFT calculations performed at the PBE0DH level of theory, this base pair is most likely dinuclear, with the two HgII ions coordinated to O2 and O4 of the thymine base.  相似文献   

20.
The experimental construction of a double-stranded DNA microcircle of only 42 base pairs entailed a great deal of ingenuity and hard work. However, figuring out the three-dimensional structures of intermediates and the final product can be particularly baffling. Using a combination of model building and unrestrained molecular dynamics simulations in explicit solvent we have characterized the different DNA structures involved along the process. Our 3D models of the single-stranded DNA molecules provide atomic insight into the recognition event that must take place for the DNA bases in the cohesive tail of the hairpin to pair with their complementary bases in the single-stranded loops of the dumbbell. We propose that a kissing loop involving six base pairs makes up the core of the nascent dsDNA microcircle. We also suggest a feasible pathway for the hybridization of the remaining complementary bases and characterize the final covalently closed dsDNA microcircle as possessing two well-defined U-turns. Additional models of the pre-ligation complex of T4 DNA ligase with the DNA dumbbell and the post-ligation pre-release complex involving the same enzyme and the covalently closed DNA microcircle are shown to be compatible with enzyme recognition and gap ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号