首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
以提高光纤布拉格光栅(fiber Bragg grating,FBG)加速度传感器灵敏度为导向,理 论研究增敏机理模型,并建立优化和综合性能评价判据。首先,依据惯性器件工作的机理, 建立FBG加速度传感器的通用物理新模型,讨论分析传感器的敏感结构体与FBG的设计方 式,研究其灵敏度的响应机理。其次,分析惯性质量、封装光纤长度、敏感结构体刚度和光 纤的杨氏模量对灵敏度的影响,探寻敏感结构体刚度的阈值边缘条件,实现其高灵敏度。最后, 提出FBG加速度传感器“品质因子”的概念,结合传感器的物理参数的阈值条件,研究品 质因子与惯性质量和封装光纤长度的关系。这不仅为FBG加速度传感器综合性能的评判提 供可靠的依据,还对传感器的设计与优化具有重要的理论指导意义和实际的应用价值。  相似文献   

2.
3.
一般的传感器灵敏度高,但体积大,不便于封装。法布里-珀罗(F-P)腔型传感器结构简单、体积小和封装容易等优点获得了广泛关注。通过熔接2段不同折射率光纤,并将传感光纤包层去掉、浸泡在待测液体中,构成了F-P腔折射率传感器。传感器的最小分辨率为3.0135×10-4,传感光纤长度仅为15μm,尺寸远小于其它F-P腔干涉仪,并且对传感光纤长度精度要求很低,便于制造。  相似文献   

4.
设计了一款基于光纤法布里-珀罗(F-P)干涉仪型的位移传感器.首先将单模光纤和无芯光纤拼接在一起,把无芯光纤的末端切成平面,然后把该结构固定在精密位移平台上,最后在无芯光纤末端位置处垂直放置一面全反镜,构成一个复合的F-P干涉仪.实验中,调节精密位移平台上的千分尺来改变无芯光纤与平面镜镜面的距离,从而改变F-P干涉仪的...  相似文献   

5.
6.
罗云  陆安江  张正平 《通信技术》2012,(10):18-20,23
基于法布里-珀罗腔的光纤液位传感器具有成本低、体积小、灵敏度高、稳定可靠等优点,具有广阔的应用前景。基于这些因素,首先介绍了光纤液位传感器的基本原理。为了解决液位高度和方向变化的测量问题,利用条纹计数法和双光路判向法解调光纤液位传感器信号,然后提出了详细的设计方案。最后利用单片机仿真软件对系统进行了仿真,并分析了噪声对系统性能的影响,提出了屏蔽噪声的改进方法。  相似文献   

7.
提出了一种基于琼脂薄膜的微型法布里-珀罗(F abry-Perot,F-P)光纤湿度传感器。传感器通过将标准单模光纤插入空 芯玻璃管并在玻璃管端面浸涂琼脂薄膜形成双F-P结构 。当环境相对湿度变化时,琼脂薄膜的体积和 折射率发生改变,从而引起干涉光发生波长偏移。搭建了湿度传感实验系统,对传感器的湿 度传感特性进行了表征,在50%RH—80%RH的相 对湿度范围内实现了高达1.232 nm/%RH的相对湿度测量灵敏度。该传感器尺寸紧凑、成本低、具有较好的线 性 灵敏度,且制备方式简单。  相似文献   

8.
针对光纤法布里-珀罗传感器受到温度、压力等作用会使正交工作点发生漂移的问题,提出一种负反馈的方法使正交工作点输出稳定。通过扫描波长找到正交工作点,使用找到的电流重新设置激光器,将外界变化引起的正交工作点变化引入到温度负反馈控制系统中,使温度控制激光器的输出波长,设计了基于负反馈的稳定正交工作点系统。通过温度变化3℃,设计的稳定正交工作点系统能够使正交工作点稳定地输出,从而验证了系统设计的正确性。  相似文献   

9.
葛益娴  赵伟绩  张鹏 《半导体光电》2017,38(6):788-791,797
提出了一种新型结构的法布里-珀罗(F-P)腔光纤压力传感器.该传感器基于法布里-珀罗多光束干涉,利用压力敏感膜的纵向挠度变化带动位移柱的横向位移运动来改变F-P腔的腔长变化.详细阐述了传感器新结构的设计方法及其工作原理,分析了不同参数对传感器性能的影响.采用ANSYS软件仿真模拟了传感器压力敏感膜在压力作用下的挠度变化.结合现有的MEMS工艺,可制作出工艺简单、温度系数低、灵敏度高,且抗电磁干扰的MEMS光纤压力传感器.  相似文献   

10.
11.
刘闯闯  朱学华  苏浩 《激光技术》2022,46(2):175-181
全光纤电流传感器作为智能电网中的重要设备之一,具有比传统电磁式互感器更显著的优势,在高压及超高压环境中有广阔的应用前景.首先阐明了影响全光纤电流传感器灵敏度的主要因素,综述了近年来国内外学者提高电流传感灵敏度的解决方案和研究成果;其次着重分析一些改进型结构的全光纤电流传感器消除温度、线性双折射等对传感灵敏度影响的工作原...  相似文献   

12.
赵雷  陈伟民  章鹏 《激光杂志》2006,27(5):15-16
讨论了光在F-P腔内的传输损耗,并分析了损耗对传感器输出信号质量的影响,进而提出了通过提高反射光纤端面反射率的方法来改善传感器输出信号的质量。为了使传感器在其工作腔长范围内的输出信号整体上具有尽可能好的对比度,采用最小均方误差法确定了反射光纤端面的最优反射率值,为F-P传感器制作中光纤端面反射率的确定提供了指导。  相似文献   

13.
通过傅里叶变换在频域中对光纤F-P传感器的透射光谱进行研究,简化了腔长解调的过程,使得腔长解调变得简单且易于控制。主要从理论上分析了光纤F-P传感器透射光谱的特性和影响因素,对光纤F-P传感器的并联复用和串联复用的傅里叶变换解调方法进行了研究和讨论,同时利用数值模拟仿真研究了光纤F-P传感阵列应变传感的规律。  相似文献   

14.
基于MEMS技术的水平轴光纤加速度传感器   总被引:1,自引:1,他引:0  
提出了一种基于微机电系统(MEMS)技术的水平轴光纤加速度传感器,并与Z轴光纤加速度传感器在同一MEMS芯片上制造,形成单一方向出纤的三轴光纤加速度传感器。分析了器件工作原理和器件结构参数与其性能的关系,利用MEMS技术成功制作出了加速度传感器样品。初步测试结果表明,本光纤加速度传感器灵敏度为164mV/g,3dB带宽的截止频率为1 600Hz。  相似文献   

15.
为了实现高灵敏度液体折射率传感器的高效制备,采用飞秒激光直写技术,在光纤末端刻蚀出矩形凹槽,辅以光纤熔接方法,制备出一种基于光纤内双开口法布里-珀罗(F-P)干涉腔的折射率传感器。该传感器的液体折射率传感灵敏度达到1107.76nm/RIU。讨论了温度对该传感器性能的影响,温度串扰小于0.0025nm/℃;基于海水含盐浓度与折射率的线性关系,探讨了该传感器在海水含盐浓度传感测量方面的应用,灵敏度为0.171nm/(mgmL-1)。结果表明,基于光纤内双开口F-P干涉腔的折射率传感器具有干涉谱对比度高、线性响应良好、灵敏度高、不易受温度串扰、结构紧凑、制备简单高效等优点,在生物、医疗、化学、环境等领域中有着广泛的应用前景。  相似文献   

16.
为研究不同材料对法布里-珀罗(F-P)干涉声传感器性能的影响。采用几种不同金属材料,设计制作了基于光纤端面—膜片非本征型F-P干涉声传感器,利用有限元方法对圆形振动膜片进行模态分析,得到了一阶固有频率。实验结果表明:由金、锌合金材料制作的传感器可探测较低声压,且传感器灵敏度较高、对外界声波信号响应成良好的线性关系。  相似文献   

17.
为了克服传统光纤化学传感器的不足,运用宽光谱分析法设计一种基于倏逝波原理的光纤化学传感器,研究了传感器的几何结构参数,溶液浓度与灵敏度的关系。运用光束传播法(BPM)分析传感器几何结构参数与灵敏度的关系;通过化学腐蚀方法制备出不同参数结构的传感器,并用不同浓度亚甲基蓝溶液对这些传感器进行实验验证。实验结果表明,模拟结果与实验结果相符,溶液浓度越大,传感区纤芯越细、越长,灵敏度越高;文章提出的光纤倏逝波化学传感器在水质检测方面有着潜在的应用。  相似文献   

18.
高灵敏度分段结构光纤倏逝波传感器   总被引:1,自引:1,他引:0  
提出一种基于倏逝波吸收原理的高灵敏度分段结 构光纤倏逝波传感器。运用光束传播法(BPM)对分 段和直形波导模型进行数值模拟,分段波导中高阶模在每次分段的第1个界面上被反复的激 发和吸收。分析 不同结构和溶液浓度对传感器灵敏度的影响,通过化学腐蚀方法制备出不同结构参数的倏逝 波传感器,并用 不同浓度亚甲基蓝溶液对传感器的灵敏度特性进行实验验证。实验结果表明,在传感直径相 同和分段结构传 感器的传感长度3cm短于传统的单一的直形传感器传感长度5cm的条件下,分段结构传感器 的灵敏度是 0.038L/g,优于直形传感器的灵敏度0.026L/g。分段结构光纤倏逝波传感器能有效激发 光纤中低阶模到高 阶模的转变,从而提高传感器的灵敏度。实验结果与模拟和理论结果相符。因此,分段结构 光纤倏逝波传感 器相对于传统的单一的直形传感器不仅具有较高的灵敏度,且机械强度较高。  相似文献   

19.
一种高灵敏度光纤光栅压力传感器   总被引:3,自引:2,他引:1  
谭波 《光电子.激光》2012,(11):2102-2105
为测量管路中的液体压力,设计了一种基于L型梁的高灵敏度光纤Bragg光栅(FBG)压力传感器。通过将FBG粘贴于L型梁上,当压力作用于一端为锥台结构的活塞上时,活塞将通过锥台推动L型梁发生弯曲,从而使FBG产生应变。基于本文结构的FBG压力传感器可用于测量管路中的液体压力,并具有较高的压力灵敏度。实验结果表明,本文传感器在0~6 MPa范围内的压力灵敏度为4.97×10-4 MPa-1,约为裸栅的251倍,且具有良好的线性度和可重复性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号