首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Solid-liquid transition of fine tin particles having diameter of 2–10 nm is studied in-situ by high-resolution transmission electron microscopy under a ultra-high vacuum condition. Melting temperature is confirmed to decrease with the decrease of particle diameter. The particles less than the critical size, 2r c?5 nm, are found to have a specific phase between the solid and the liquid phase. The particle in this “pseudo-crystalline” phase contains crystalline embryos in it. Particles larger than the critical size have sharp liquid-solid transition, which completed within the time resolution of our microscope observation, 33 ms upon heating or cooling process. Large solid particles have Wulff's polyhedron, while particles around the critical diameter have rather spherical shape. Structural anomaly at the critical size occurs all over the outer most surface layer slightly below the melting temperature. Origin of the “pseudo-crystalline” phase and surface pre-melting phenomena are discussed.  相似文献   

2.
In order to elucidate the mechanism of lithium transport in intercalation electrodes based on solid lithium-accumulating compounds and determine its parameters, the kinetic models are used which allow the combined analysis of electrode impedance spectroscopy, cyclic voltammetry, pulse chronoampero- and chronopotentiometry data to be carried out. The models describe the stages of consecutive lithium transport in the surface layer and bulk of electrode-material particles, including the accumulation of species in the bulk. The lithium transport stages that occur in the surface layer of an intercalation-material particle and in its bulk are both of the diffusion nature but substantially differ as regards their characteristic times and diffusion coefficients D. Taking account of this peculiarity and assessing adequately the geometrical configuration of intercalation system allow the diffusion parameters of lithium transport to be correctly determined.  相似文献   

3.
曾建邦  蒋方明 《物理化学学报》2013,29(11):2371-2384
针对锂离子电池内耦合电化学反应的多物理传输过程,采用光滑粒子水力学数值技术,开发了可以考虑电极(包括隔膜)介观微结构的数值模型.以电极中固体活性物颗粒尺寸为主要考虑参数,初步探讨了该模型用于电极介观微结构设计的可行性.模型模拟得到放电过程中电池内部Li/Li+浓度场、固/液相电势场以及交换流密度等微观细节分布,以及电池宏观性能如输出电压等,据此可以分析并揭示电池放电过程的基础物理化学机制、电池宏观性能与构成电极的固体活性物颗粒尺寸之间的关联.研究还发现:当阴、阳极固体活性物颗粒尺寸均较小时,固体活性物颗粒内部Li分布更为均匀,电化学反应更均匀发生,电池输出电压最高.  相似文献   

4.
We have investigated the influences of the magnetic field strength, shear rate, and random forces on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. This dispersion is composed of ferromagnetic spheroidal particles with a magnetic moment normal to the particle axis. In the present analysis, these spheroidal particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The basic equation of the orientational distribution function has been derived from the balance of the torques and solved numerically. The results obtained here are summarized as follows. For a very strong magnetic field, the rodlike particle is significantly restricted in the field direction, so that the particle points to a direction normal to the flow direction (and also to the magnetic field direction). However, the present particle does not exhibit a strong directional characteristic, which is one of the typical properties for the previous particle with a magnetic moment parallel to the particle axis. That is, the particle can rotate around the axis of the magnetic moment, although the magnetic moment nearly points to the field direction. The viscosity significantly increases with the field strength, as in the previous particle model. The particle of a larger aspect ratio leads to the larger increase in the viscosity, since such elongated particles induce larger resistance in a flow field. The diffusion coefficient under circumstances of an applied magnetic field is in reasonable agreement between theoretical and experimental results.  相似文献   

5.
Electrorheological (ER) fluids are composed of dielectric particles dispersed in an inert liquid of low electric permittivity. Upon the application of an electric field ER fluids rapidly solidify, or increase their viscosity. Characteristic increase of the viscosity of ER fluids is due to the formation of particle chains that bridge the electrodes. This process is greatly affected by polarization processes within the solid phase and at the surface of the grains. These phenomena are governed by dopants, functional groups, structure of the solid particles and the solid/liquid interface. To find relations between parameters of the ER effect and material properties of components of ER fluids, two main types of the materials were investigated: conjugated polymers [polyphenylene (PPP), pyrolyzed polyacrylonitrile (PAN) and polythiophene] and solid electrolytes based on polyacrylonitrile complexed with inorganic salts. It was found that the ER activity resulted from surface polarization processes due to the presence of polar species (PAN) or bulk polarization related to mobile ions (PPP). Polythiophene, despite the presence of a conjugated system of multiple bonds, showed only residual ER effect. Solid electrolyte‐based fluids exhibited relatively high activity originated from ionic polarization. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Oxide ceramic masses react to simple shearing with hardening (peptisation: increase in the shear stress with the shear deformation). In the present study the correlation between the increase in the shear stress and the porosity, agglomeration processes and the type of flow are analysed. For this purpose oxide ceramic masses are tested in a shear device especially developed for pastes and analysed by rheometric experiments, NMR methods and particle size analysis. The results support the hypothesis that structural changes (hardening, increase in the mean porosity) of the material during the peptisation mainly depend on the magnitude and not on the kind of the energy input and thus of the type of flow. The fraction of bound (more generally, the immobilised) water increases with the shear displacement. Also crushing of primary particles could be observed. Both the crushing of solid particles causing an increased solid surface and the formation of a three-dimensional gel structure are microscopic effects capable of resulting in the binding or retaining water. On a macroscopic scale these phenomena cause hardening. Magnetic resonance imaging visualises flow-induced agglomerates, which form owing to the shear flow and increase the porosity averaged over the whole sample. After the shear experiment rolls of paste can be seen which indicate that the general assumption of a plane shear flow in the shear device is not warrantable. Received: 19 July 2001 Accepted: 25 October 2001  相似文献   

7.
We describe phenomena of colloidal particle transport and separation inside single microdroplets of water floating on the surface of dense fluorinated oil. The experiments were performed on microfluidic chips, where single droplets were manipulated with alternating electric fields applied to arrays of electrodes below the oil. The particles suspended in the droplets were collected in their top region during the evaporation process. Experimental results and numerical simulations show that this microsepration occurs as a result of a series of processes driven by mass and heat transfer. An interfacial tension gradient develops on the surface of the droplet as a result of the nonuniform temperature distribution during the evaporation. This gradient generates an internal convective Marangoni flow. The colloidal particles transported by the flow are collected in the top of the droplets by the hydrodynamic flux, compensating for evaporation through the exposed top surface. The internal flow pattern and temperature distribution within evaporating droplets were simulated using finite element calculations. The results of the simulation were consistent with experiments using tracer particles. Such microseparation processes can be used for on-chip synthesis of advanced particles and innovative microbioassays.  相似文献   

8.
Obtaining the morphology of two-phase flow field accurately through experiments is very challenging, due to the complexity and the drainage area diversity of particle–fluid two-phase flow. Depending on the particle concentration, size, flow velocity, and so on, the two-phase flow tends to be in a more complex form, known as coupled flow status. Crystallisation process within a crystalliser is a typical engineering application of particle–fluid two-phase flow, and hence, the flow field within a potassium salt crystallizer is implemented to simulate the crystal suspension and to mix flow state during a continuous crystallisation process. Because the two-fluid model treats the particle phase and fluid phase as two distinct continuous media, this simulation model takes the effect of virtual mass force into considerations. The enhanced two-fluid model is then applied to investigate the influencing factors of the coupled flow field between the potassium salt particles and the fluid in the crystalliser under various operating conditions. The results indicated that the stirring speed, the concentration of the feed particles, and the particle size affected the distribution of coupled flow field at different levels and, thus, affected the crystallisation phenomena of a potassium salt. Among those factors, the stirring speed appears to have the most obvious effect on the flow field, as it affects the velocity of the two-phase flow. In the conditions listed in this paper, the minimum stirring speed is roughly 50 rpm to form a stable and circular flow field in the crystallizer, and the maximum particle size is controlled at around 12 mm and the feed particle concentration of roughly 32% to ensure cyclic crystallization. The research method used in this article provides a baseline for the study of the coupled flow field of particle–fluid two-phase flow and its influencing factors. This research also states theoretical guidance for the optimisation of operating conditions in the production and application of potassium salt crystallizer.  相似文献   

9.
Electroosmotic flow in the vicinity of a colloidal particle suspended over an electrode accounts for observed changes in the average height of the particle when the electrode passes alternating current at 100 Hz. The main findings are (1) electroosmotic flow provides sufficient force to move the particle and (2) a phase shift between the purely electrical force on the particle and the particle's motion provides evidence of an E2 force acting on the particle. The electroosmotic force in this case arises from the boundary condition applied when faradaic reactions occur on the electrode. The presence of a potential-dependent electrode reaction moves the likely distribution of electrical current at the electrode surface toward uniform current density around the particle. In the presence of a particle the uniform current density is associated with a nonuniform potential; thus, the electric field around the particle has a nonzero radial component along the electrode surface, which interacts with unbalanced charge in the diffuse double layer on the electrode to create a flow pattern and impose an electroosmotic-flow-based force on the particle. Numerical solutions are presented for these additional height-dependent forces on the particle as a function of the current distribution on the electrode and for the time-dependent probability density of a charged colloidal particle near a planar electrode with a nonuniform electrical potential boundary condition. The electrical potential distribution on the electrode, combined with a phase difference between the electric field in solution and the electrode potential, can account for the experimentally observed motion of particles in ac electric fields in the frequency range from approximately 10 to 200 Hz.  相似文献   

10.
Ren H. Luo  Huan J. Keh 《Electrophoresis》2021,42(21-22):2134-2142
The electrophoresis and electric conduction of a suspension of charged spherical particles in a salt-free solution are analyzed by using a unit cell model. The linearized Poisson-Boltzmann equation (valid for the cases of relatively low surface charge density or high volume fraction of the particles) and Laplace equation are solved for the equilibrium electric potential profile and its perturbation caused by the imposed electric field, respectively, in the fluid containing the counterions only around the particle, and the ionic continuity equation and modified Stokes equations are solved for the electrochemical potential energy and fluid flow fields, respectively. Explicit analytical formulas for the electrophoretic mobility of the particles and effective electric conductivity of the suspension are obtained, and the particle interaction effects on these transport properties are significant and interesting. The scaled zeta potential, electrophoretic mobility, and effective electric conductivity increase monotonically with an increase in the scaled surface charge density of the particles and in general decrease with an increase in the particle volume fraction, keeping each other parameter unchanged. Under the Debye-Hückel approximation, the dependence of the electrophoretic mobility normalized with the surface charge density on the ratio of the particle radius to the Debye screening length and particle volume fraction in a salt-free suspension is same as that in a salt-containing suspension, but the variation of the effective electric conductivity with the particle volume fraction in a salt-free suspension is found to be quite different from that in a suspension containing added electrolyte.  相似文献   

11.
12.
This work demonstrates how electrostatic interactions, described in terms of the classical DLVO theory, influence colloid particle deposition phenomena at solid/liquid interfaces. Electrostatic interactions governing particle adsorption in both non-polar and polar media (screened interactions) are discussed. Exact and approximate methods for calculating the interaction energy of spherical and non-spherical (anisotropic) particles are presented, including the Derjaguin method. Phenomenological transport equations governing particle deposition under the linear regime are discussed with the limiting analytical expressions for calculating initial flux. Non-linear adsorption regimes appearing for higher coverage of adsorbed particles are analysed. Various theoretical approaches are exposed, aimed at calculating blocking effects appearing due to the presence of adsorbed particles. The significant role of coupling between bulk transport and surface blocking is demonstrated. Experimental data obtained under well-defined transport conditions, such as diffusion and forced convection (impinging-jet cells), are reviewed. Various experimental techniques for detecting particles at interfaces are discussed, such as reflectometry, ellipsometry, streaming potential, atomic force microscopy, electron and optical microscopy, etc. The influence of ionic strength and flow rate on the initial particle deposition rate (limiting flux) is presented. The essential role of electrostatic interactions in particle deposition on heterogeneous surfaces is demonstrated. Experimental data pertinent to the high-coverage adsorption regime are also presented, especially the dependence of the maximum coverage of particles and proteins on the ionic strength. The influence of lateral electrostatic interactions on the structure of particle monolayers is elucidated, and the links between colloid and molecular systems are pointed out.  相似文献   

13.
An analytical study is presented for the quasi-steady electrophoretic motion of a dielectric sphere situated at the center of a spherical cavity when the surface potentials are arbitrarily nonuniform. The applied electric field is constant, and the electric double layers adjacent to the solid surfaces are assumed to be much thinner than the particle radius and the gap width between the surfaces. The presence of the cavity wall causes three basic effects on the particle velocity: (1) the local electric field on the particle surface is enhanced or reduced by the wall; (2) the wall increases the viscous retardation of the moving particle; and (3) a circulating electroosmotic flow of the suspending fluid exists because of the interaction between the electric field and the charged wall. The Laplace and Stokes equations are solved analytically for the electric potential and velocity fields, respectively, in the fluid phase, and explicit formulas for the electrophoretic and angular velocities of the particle are obtained. To apply these formulas, one has to calculate only the monopole, dipole, and quadrupole moments of the zeta-potential distributions at the particle and cavity surfaces. It is found that the contribution from the electroosmotic flow developing from the interaction of the imposed electric field with the thin double layer adjacent to the cavity wall and the contribution from the wall-corrected electrophoretic driving force to the particle velocities can be superimposed as a result of the linearity of the problem.  相似文献   

14.
A network model, originally designed for an electrokinetic study of soft particle suspensions, has been used for an in-depth analysis of the physical behavior of these systems under the action of an externally applied DC electric field. The versatility of the network simulation method used makes it possible to obtain information readily not only about the electrophoretic mobility, but also about any physical variable of interest at all points around the suspended particle: electric potential, ion concentrations, fluid velocity. The field-induced polarization of the double layer is described in terms of the dependence of these and other derived variables (volume charge density, electric field components, ion flux components) on the distance to the membrane-solution interface. In contrast to colloidal suspensions of hard particles, which basically depend on just two parameters (the reciprocal Debye length multiplied by the particle radius, kappaa, and the zeta potential, zeta), soft particle suspensions require a wider parameter set. First, there are two characteristic diffusion lengths in the system (one inside the membrane and the other in the solution) and two geometrical lengths (the core radius a and the membrane thickness (b-a)). Furthermore, there is the fixed charge density inside the membrane (and possibly a surface charge density over the core) that cannot be represented by a zeta potential. Finally, the parameter that characterizes the interaction between the fluid and the permeable membrane, gamma, strongly influences the behavior of the system. Dependences on all these parameters (except the geometrical ones) are included in this study.  相似文献   

15.
朱永春  唐丽娜  计红果 《电化学》2007,13(2):193-197
以电沉积铜为探针,循环伏安法研究硬脂酸钠在蓖麻油/水界面上自组装的动力学.在涂有蓖麻油的石墨粉-环氧树脂固态电极上,硬脂酸钠自组装膜形成过程可由电沉积铜阳极峰监测,遵从高斯函数生长动力学,生长速率常数为km=0.0006292(±0.0000294)s-1.硬脂酸钠自组装膜能较好地控制铜粒子的球形生长和生长尺度,形成硬脂酸钠自组装-铜纳米粒子复合膜.铜粒子在石墨粉-环氧树脂固态电极上为半球形生长,而在涂油和自组装电极上为球形生长.与蓖麻油涂层相比,石墨粉-环氧树脂固态电极与沉积铜间存在弱相互作用(ΔG0=3.86kJ/mol),而硬脂酸钠羧基与沉积铜也有较弱的相互作用(ΔG0=-2.412kJ/mol).  相似文献   

16.
Non-equilibrium aspects of traditional electrokinetic phenomena (electrophoresis, electroosmosis, streaming potential, sedimentation potential), electrostatic interaction of particles and new electrokinetic phenomena are considered. The significance of non-equilibrium electric surface phenomena for many major areas of modern colloid science (characterization of colloids, membrane science, transport phenomena and separation, particle interaction and coagulation) is established.The study of non-equilibrium electric surface phenomena is connected with the validation of the standard electrokinetic model (SEM), the development of a non-standard model and the development of an extensive programme of disperse system characterization based on integrated electrokinetic investigations. Experimental and theoretical studies of systems with a smooth, non-porous impermeable surface (mica in Anderson's experiments, and quartz microcapillaries with a molecule-smooth surface in Churaev's experiments) have shown that usually there are no significant difficulties in interpreting electrokinetic investigations despite the possible anomaly in the water structure near the surface and the possibility of maximum shear stress (yield stress), i.e. the anomalous viscosity and decreased dissolving power with respect to ions. However, systems which do not satisfy the conditions of the SEM are widely distributed, owing to the porosity, roughness or permeability of the boundary layer of the surface of the solid body which simultaneously belongs to the solid and liquid phases. In this layer, enclosed between the outer Helmholtz plane and the slipping plane, the motion of the liquid strongly slows down and the tangential flow of ions is characterized purely by the mobility which is close to the normal. Thus, a general property of a non-standard electrokinetic model is the presence of an anomalous (additional) surface conductivity in excess of the surface conductivity determined according to Bikerman's equation based on the ζ -potential alone.Confidence in modelling the electrokinetic phenomena has grown with the development of methods for modifying the surface such that its properties approach those of the SEM (Bijsterbosch and co-workers; Saville and co-workers).Extension of the particle characterization concept requires the measurement of both the mobile charge and the electrokinetic charge and from this an estimate of the thickness of the additional conductivity zone can be made. With the additional measurement of a titratable charge, it is possible to estimate the ion distribution between the dense and diffuse parts of the double layer (DL) and to estimate the decreased mobility of ions in the Stern layer or in the immobilized part of the DL.Quantitative laws governing the interaction of particles and corresponding to the non-standard model substantially differ from the traditional laws described by the DVLO theory as applied to the SEM. This is also true for adsorption properties which are characterized without sufficient reason by means of the ζ-potential. Therefore both the development of models of interaction and adsorption of ions, allowing for the non-standard electrokinetic model, and the extension of the particle characterization programme to integrated investigations of electric surface phenomena are required.Further generalization of the theory of electrokinetic phenomena is achieved. In addition to the surface charge another variety of surface force can be the origin of the electrokinetic phenomena.  相似文献   

17.
Atmospheric aerosol particles are important in many atmospheric processes such as: light scattering, light absorption, and cloud formation. Oxidation reactions continuously change the chemical composition of aerosol particles, especially the organic mass component, which is often the dominant fraction. These ageing processes are poorly understood but are known to significantly affect the cloud formation potential of aerosol particles. In this study we investigate the effect of humidity and ozone on the chemical composition of two model organic aerosol systems: oleic acid and arachidonic acid. These two acids are also compared to maleic acid an aerosol system we have previously studied using the same techniques. The role of relative humidity in the oxidation scheme of the three carboxylic acids is very compound specific. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. The particle phase has a strong effect on the particle processing and the effect of water on the oxidation processes. Oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In addition, water does not influence the oxidation reactions of oleic acid particles, which is partly explained by the structure of oxidation intermediates. The low water solubility of oleic acid and its ozonolysis products limits the effect of water. This is very different for maleic and arachidonic acid, which change their phase from liquid to solid upon oxidation or upon changes in humidity. In a solid particle the reactions of ozone and water with the organic particle are restricted to the particle surface and hence different regimes of reactivity are dictated by particle phase. The potential relevance of these three model systems to mimic ambient atmospheric processes is discussed.  相似文献   

18.
We have investigated the influence of the magnetic field strength, shear rate, and rotational Brownian motion on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. The rodlike particle is modeled as a magnetic spheroidal particle which has a magnetic moment normal to the particle axis; such a particle may typically be a hematite particle. In the present study, an external magnetic field is applied in the direction normal to the shear plane of a simple shear flow. The basic equation of the orientational distribution function has been derived from the balance of torques and solved numerically. The results obtained here are summarized as follows. Although the orientational distribution function shows a sharp peak in the shear flow direction for a very strong magnetic field, such a peak is not restricted to the field direction alone, but continues in every direction of the shear plane. This is due to the characteristic particle motion that the particle can rotate around the axis of the magnetic moment in the shear plane, although the magnetic moment nearly points to the magnetic field direction. This particle motion in the shear plane causes negative values of the viscosity due to the magnetic field. The viscosity decreases, attains a minimum value, and then converges to zero as the field strength increases. Additionally, the diffusion coefficient is significantly influenced by such characteristic particle motion in the shear plane for a strong magnetic field.  相似文献   

19.
We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Subsequently, the second analyte molecule can bind to the adjacent unoccupied site. In the second problem, two different analytes compete for one binding site on the same surface receptor. Finally, the third problem considers the case of positive cooperativity among bound molecules in the hydrogel using a simple mean-field approach. The transport in both the flow channel and the hydrogel phases of the biosensor is taken into account in this case (with few exceptions, most previous studies assume a simpler model in which the hydrogel is treated as a planar surface with the receptors). We consider simultaneously diffusion and convection through the flow channel together with diffusion and cooperativity binding on the surface and in the hydrogel. In each case, typical results for the concentration contours of the free and bound molecules in the flow channel and hydrogel regions are presented together with the time-dependent association/dissociation curves and reaction rates. For binding site competition, the analysis predicts overshoot phenomena.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号