首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme biosensor for the determination of 4-chlorophenol in water solutions based on potentiometric pH-sensitive field-effect transistors as semiconductor transducer and tyrosinase immobilised in saturated glutaraldehyde vapours as biorecognition element has been described for the first time. The main analytical characteristics were studied under different conditions, as well as the possibility to optimise these working parameters. Different factors, such as pH of immobilisation, the enzyme loading and time of immobilisation in glutaralaldehyde vapours were investigated with regard to the influence on sensitivity, limit of detection, dynamic range, and operational and storage stability. The best result gives a limit of detection close to 20 ppm and a dynamic range from 25 to 1000 ppm with sensitivity 2 mV mM(-1). The operational stability was not less-than15 h and the R.S.D. were approximately 3% for intra-sensors responses and approximately 7% for inter-sensors responses. The storage stability was >15 days.  相似文献   

2.
For the design of a biosensor sensitive to steroidal glycoalkaloids, pH-Sensitive Field Effect Transistors as transducers and immobilised butyrylcholinesterase as a biorecognition element have been used. The total potato glycoalcaloids can be measured by this biosensor in the concentration range 0.5-100 microM with detection limits of 0.5 microM for alpha-chaconine and of 2.0 microM for alpha-solanine and solanidine, respectively. The responses of the developed biosensors were reproducible with a relative standard deviation of about 1.5% and 5% for intra- and inter-sensor responses (both cases, n=10, for an alkaloid concentration of 5 microM), respectively. Moreover, due to the reversibility of the enzyme inhibition, the same sensor chip with immobilised butyrylcholinesterase can be used several times (for at least 100 measurements) after a simple washing by a buffer solution and can be stored at 4 degrees C for at least 3 months without any significant loss of the enzymatic activity.  相似文献   

3.
A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at −0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 × 103 μA mM−1 cm−2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

4.
5.
This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry.The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges.Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described.We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.  相似文献   

6.
The construction of amperometric enzymeless biosensors for phenolic compounds determination, using carbon paste electrode modified with copper phtalocyanine (CuPc) and histidine (His), based on the chemistry of the dopamine β-monooxygenase (DβM) enzyme that catalyzes the hydroxylation of the dopamine and its analogs is shown. The modified carbon paste was evaluated on electrodes constructed in two ways: putting the paste into a cavity of a rotating disk electrode and a platinum slide electrode fixed into a glass tube. The sensor in hydrodynamic conditions presented a linear response range between 30 and 250 μmol l−1, with a sensitivity of 4.6±0.1 nA l μmol−1 cm−2 for catechol, response time of 3 s and lifetime of about 50 days when stored at room temperature. The sensor in static conditions showed a linear response range from 40 to 250 μmol l−1, with a sensitivity of 0.30±0.01 nA l μmol−1 cm−2 for catechol. The sensors presented the following relative response order for dopamine and some analog species: catechol>dopamine>guaiacol>serotonin>phenol.  相似文献   

7.
A simple and new reagentless phenolic compound biosensor was constructed with tyrosinase immobilized in the gelatine matrix cross-linked with formaldehyde. The morphologies of gelatine and gelatine/tryosinase were characterized by SEM. The tyrosinase retains its bioactivity when being immobilized by the gelatine film. Phenolic compounds were determined by the direct reduction of biocatalytically liberated quinone at -0.1 V vs SCE. The process parameters for the fabrication of the enzyme electrode were studied. Optimization of the experimental parameters has been performed with regard to pH, operating potential, temperature and storage stability. This biosensor exhibits a fast amperometric response to phenolic compounds. The linear range for catechol, phenol, and p-Cresol determination was from 5×10−8 to 1.4×10−4 M, 5×10−8 to 7.1×10−5 M, and 1×10−7 to 3.6×10−5 M, with a detection limit of 2.1×10−8 M, 1.5×10−8 M, and 7.1×10−8 M, respectively. The enzyme electrode retained ca.77% of its activity after 7 days of storage at 4°C in a dry state. The proposed sensor presented good repeatability, evaluated in terms of relative standard deviation (R.S.D.=8.6%) for eight different biosensors and was applied for determination in water sample. The recovery for the sample was from 99.0% to 99.8%.  相似文献   

8.
The key theoretical principles of the work on ion-selective field-effect transistor connected with their application in bioanalytical practice, some specifics of modern microtechnologies for their creation, and measurement schemes with set-ups are discussed. The achievements in the creation of enzyme biosensors based on ion-selective field-effect transistors and prospects for their application are described in detail.  相似文献   

9.
A sensitive enzyme-based FET biosensor for lactate has been obtained by introducing MnO2 nanoparticles at the gate surface via a layer-by-layer assembling method.  相似文献   

10.
Organic field-effect transistors (OFETs) with a hydroxy-functionalized semiconductor incorporated into a receptor layer were fabricated and shown to respond strongly to the analyte dimethyl methylphosphonate (DMMP) that simulates phosphonate nerve agents. Large and reproducible source-drain current changes were observed upon exposure to DMMP vapor. Compared to single component transistors, OFETs with a mixed hydroxylated and nonhydroxylated semiconductor upper layer exhibited higher sensitivity. We further investigated the selectivity of the heterostructured OFETs by comparing responses upon exposure to different interference vapors with response to DMMP exposure. Much higher response was observed in the case of DMMP, even when the concentration of DMMP vapor was much lower than other analytes. Microstructures of OSC were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), revealing that the organic mixture has similar crystal structure and surface morphology to those of single component OSC films, indicating that the enhanced performance of the mixture is due to its chemical properties, rather than microstructural effects.  相似文献   

11.
Liu F  Reviejo AJ  Pingarrón JM  Wang J 《Talanta》1994,41(3):455-459
The possibilities of amperometric enzyme electrodes in reversed micellar systems for the determination of phenol, 4-chloro-3-methylphenol and 2,4-dimethylphenol are illustrated. The used enzymatic reaction consisted of the oxidation of the phenolic compounds by oxygen, catalysed by tyrosinase. The reduction of the liberated quinones was amperometrically detected. The concentration of the components of the reversed micelles, as well as the potential applied to the tyrosinase electrode have been optimized. The stability of the enzyme electrode with time was also evaluated. The effect of the analyte solubility in water upon the analytical performance of the electrode was explored. Advantages of amperometric biosensors in reversed micelles are shown with respect to aqueous media and organic phase enzyme electrodes.  相似文献   

12.
A label-free immunosensor based on an aptamer-modified graphene field-effect transistor (G-FET) is demonstrated. Immunoglobulin E (IgE) aptamers with an approximate height of 3 nm were successfully immobilized on a graphene surface, as confirmed by atomic force microscopy. The aptamer-modified G-FET showed selective electrical detection of IgE protein. From the dependence of the drain current variation on the IgE concentration, the dissociation constant was estimated to be 47 nM, indicating good affinity and the potential for G-FETs to be used in biological sensors.  相似文献   

13.
Two novel phenanthrene-based conjugated oligomers were synthesized and used as p-channel semiconductors in field-effect transistors; they exhibit high mobility and excellent stability during long-time ambient storage and under UV irradiation.  相似文献   

14.
Aromatic ring-condensed TTF derivatives exhibited excellent p-type FET performances in thin films. Introduction of fused benzene and pyrazine rings to the TTF skeleton was effective to enhance the intermolecular interactions and stability to oxygen. Ordered molecular alignment was confirmed by XRD studies. A pi-stacking structure was observed in the single crystal of diquinoxalinoTTF.  相似文献   

15.
The ability to detect minute traces of chemical warfare agents is mandatory both for military forces and homeland security. Various detectors based on different technologies are available but still suffer from serious drawbacks such as false positives. There is still a need for the development of innovative reliable sensors, in particular for organophosphorus nerve agents like Sarin.We report herein on the fabrication of a portable, battery-operated, microprocessor-based prototype sensor system relying on silicon nanowire field-effect transistors for the detection of nerve agents. A fast, supersensitive and highly selective detection of organophosphorus molecules is reported. The results show also high selectivity in complex mixtures and on contaminated materials.  相似文献   

16.
Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds was constructed. Enzymes were immobilized in titania gel matrix. The obtained biosensor was successfully used for determination of 2,6-dimethoxyphenol, 4-tertbutylcatechol, 4-methylcatechol, 3-chlorophenol and catechol. The highest sensitivity and the widest linear range were noticed for catechol, 234 mA L mol− 1 and 2.0 × 10− 7–3.2 × 10− 5 mol/L, respectively. Detection limit for catechol, at signal-to-noise ratio of 3 was 1.3 × 10− 7 mol/L.  相似文献   

17.
《Mendeleev Communications》2021,31(5):641-643
Organic field-effect transistors with styryl fullerene as a semi conductor layer applied by centrifugation are considered. Electron mobility in the transistors was 0.067 ± 10% cm2 V−1 s−1, whereas the mobility of electrons in these devices after the vacuum deposition of a semiconductor layer was much lower (0.023 ± 10% cm2 V−1 s−1).  相似文献   

18.
A surface plasmon resonance (SPR) biosensor for simultaneous detection of multiple organic pollutants exhibiting endocrine-disrupting activity, namely atrazine, benzo[a]pyrene, 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-nonylphenol, is reported. The biosensor utilizes a multichannel SPR sensor based on wavelength modulation of SPR and wavelength division multiplexing (WDM) of sensing channels, antibodies as biorecognition element and a competitive immunoassay detection format. An analysis time of 45 min (including 30-min incubation of the sample with antibodies) and limits of detection as low as 0.05, 0.07, 0.16 and 0.26 ng mL−1 are demonstrated for benzo[a]pyrene, atrazine, 2,4-D and 4-nonylphenol, respectively. The biosensor is also shown to be regenerable and suitable for repeated use.  相似文献   

19.
20.
The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号