首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A vertex-colored graph G is rainbow vertex connected if any two distinct vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. In this paper, we prove that for a connected graph G, if \({{\rm diam}(\overline{G}) \geq 3}\), then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. Next, we obtain that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 2}\), if G is connected, then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. A total-colored path is total rainbow if its edges and internal vertices have distinct colors. A total-colored graph G is total rainbow connected if any two distinct vertices are connected by some total rainbow path. The total rainbow connection number of G, denoted by trc(G), is the smallest number of colors required to color the edges and vertices of G in order to make G total rainbow connected. In this paper, we prove that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 3}\), if G is connected, then trc\({(G) \leq 5}\), and this bound is tight. Next, a Nordhaus–Gaddum-type result for the total rainbow connection number is provided. We show that if G and \({\overline{G}}\) are both connected, then \({6 \leq {\rm trc} (G) + {\rm trc}(\overline{G}) \leq 4n - 6.}\) Examples are given to show that the lower bound is tight for \({n \geq 7}\) and n = 5. Tight lower bounds are also given for n = 4, 6.  相似文献   

2.
Let a, b, r be nonnegative integers with \(1\leq{a}\leq{b}\) and \(r\geq2\). Let G be a graph of order n with \(n >\frac{(a+2b)(r(a+b)-2)}{b}\). In this paper, we prove that G is fractional ID-[a, b]-factor-critical if \(\delta(G)\geq\frac{bn}{a+2b}+a(r-1)\) and \(\mid N_{G}(x_{1}) \cup N_{G}(x_{2}) \cup \cdotp \cdotp \cdotp \cup N_{G}(x_{r})\mid\geq\frac{(a+b)n}{a+2b}\) for any independent subset {x1, x2, · · ·, xr} in G. It is a generalization of Zhou et al.’s previous result [Discussiones Mathematicae Graph Theory, 36: 409–418 (2016)] in which r = 2 is discussed. Furthermore, we show that this result is best possible in some sense.  相似文献   

3.
A total-colored path is total rainbow if its edges and internal vertices have distinct colors. A total-colored graph G is total rainbow connected if any two distinct vertices are connected by some total rainbow path. The total rainbow connection number of G, denoted by trc(G), is the smallest number of colors required to color the edges and vertices of G in order to make G total rainbow connected. In this paper, we investigate graphs with small total rainbow connection number. First, for a connected graph G, we prove that \({\text{trc(G) = 3 if}}\left( {\begin{array}{*{20}{c}}{n - 1} \\2\end{array}} \right) + 1 \leqslant \left| {{\text{E(G)}}} \right| \leqslant \left( {\begin{array}{*{20}{c}}n \\2\end{array}} \right) - 1\), and \({\text{trc(G)}} \leqslant {\text{6 if }}\left| {{\text{E(G)}}} \right| \geqslant \left( {\begin{array}{*{20}{c}}{n - 2} \\2\end{array}} \right) + 2\). Next, we investigate the total rainbow connection numbers of graphs G with |V(G)| = n, diam(G) ≥ 2, and clique number ω(G) = n ? s for 1 ≤ s ≤ 3. In this paper, we find Theorem 3 of [Discuss. Math. Graph Theory, 2011, 31(2): 313–320] is not completely correct, and we provide a complete result for this theorem.  相似文献   

4.
In this paper, we introduce a new graph parameter called the domination defect of a graph. The domination number γ of a graph G is the minimum number of vertices required to dominate the vertices of G. Due to the minimality of γ, if a set of vertices of G has cardinality less than γ then there are vertices of G that are not dominated by that set. The k-domination defect of G is the minimum number of vertices which are left un-dominated by a subset of γ - k vertices of G. We study different bounds on the k-domination defect of a graph G with respect to the domination number, order, degree sequence, graph homomorphisms and the existence of efficient dominating sets. We also characterize the graphs whose domination defect is 1 and find exact values of the domination defect for some particular classes of graphs.  相似文献   

5.
Let G be a graph with vertex set V(G). For any integer k ≥ 1, a signed total k-dominating function is a function f: V(G) → {?1, 1} satisfying ∑xN(v)f(x) ≥ k for every vV(G), where N(v) is the neighborhood of v. The minimum of the values ∑vV(G)f(v), taken over all signed total k-dominating functions f, is called the signed total k-domination number. In this note we present some new sharp lower bounds on the signed total k-domination number of a graph. Some of our results improve known bounds.  相似文献   

6.
A lower bound is obtained for the number of edges in a distance graph G in an infinitesimal plane layer ?2 × [0, ε] d , which relates the number of edges e(G), the number of vertices ν(G), and the independence number α(G). It is proved that \(e\left( G \right) \geqslant \frac{{19\nu \left( G \right) - 50\alpha \left( G \right)}}{3}\). This result generalizes a previous bound for distance graphs in the plane. It substantially improves Turán’s bound in the case where \(\frac{1}{5} \leqslant \frac{{\alpha \left( G \right)}}{{\nu \left( G \right)}} \leqslant \frac{2}{7}\).  相似文献   

7.
Let \(G=(V,E)\) be a graph. A subset \(S\subseteq V\) is a k-dominating set of G if each vertex in \(V-S\) is adjacent to at least k vertices in S. The k-domination number of G is the cardinality of the smallest k-dominating set of G. In this paper, we shall prove that the 2-domination number of generalized Petersen graphs \(P(5k+1, 2)\) and \(P(5k+2, 2)\), for \(k>0\), is \(4k+2\) and \(4k+3\), respectively. This proves two conjectures due to Cheng (Ph.D. thesis, National Chiao Tung University, 2013). Moreover, we determine the exact 2-domination number of generalized Petersen graphs P(2kk) and \(P(5k+4,3)\). Furthermore, we give a good lower and upper bounds on the 2-domination number of generalized Petersen graphs \(P(5k+1, 3), P(5k+2,3)\) and \(P(5k+3, 3).\)  相似文献   

8.
The rank of a profinite group G is the basic invariant \({{\rm rk}(G):={\rm sup}\{d(H) \mid H \leq G\}}\), where H ranges over all closed subgroups of G and d(H) denotes the minimal cardinality of a topological generating set for H. A compact topological group G admits the structure of a p-adic Lie group if and only if it contains an open pro-p subgroup of finite rank. For every compact p-adic Lie group G one has rk(G) ≥ dim(G), where dim(G) denotes the dimension of G as a p-adic manifold. In this paper we consider the converse problem, bounding rk(G) in terms of dim(G). Every profinite group G of finite rank admits a maximal finite normal subgroup, its periodic radical π(G). One of our main results is the following. Let G be a compact p-adic Lie group such that π(G) = 1, and suppose that p is odd. If \(\{g \in G \mid g^{p-1}=1 \}\) is equal to {1}, then rk(G) = dim(G).  相似文献   

9.
Let G = (V, E) be a graph. A set \({S\subseteq V}\) is a restrained dominating set if every vertex in V ? S is adjacent to a vertex in S and to a vertex in V ? S. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. We will show that if G is claw-free with minimum degree at least two and \({G\notin \{C_{4},C_{5},C_{7},C_{8},C_{11},C_{14},C_{17}\}}\) , then \({\gamma_{r}(G)\leq \frac{2n}{5}.}\)  相似文献   

10.
An r-uniform graph C is dense if and only if every proper subgraph G' of G satisfies λ(G') λ(G).,where λ(G) is the Lagrangian of a hypergraph G. In 1980's, Sidorenko showed that π(F), the Turán density of an γ-uniform hypergraph F is r! multiplying the supremum of the Lagrangians of all dense F-hom-free γ-uniform hypergraphs. This connection has been applied in the estimating Turán density of hypergraphs. When γ=2 the result of Motzkin and Straus shows that a graph is dense if and only if it is a complete graph. However,when r ≥ 3, it becomes much harder to estimate the Lagrangians of γ-uniform hypergraphs and to characterize the structure of all dense γ-uniform graphs. The main goal of this note is to give some sufficient conditions for3-uniform graphs with given substructures to be dense. For example, if G is a 3-graph with vertex set [t] and m edges containing [t-1]~(3),then G is dense if and only if m≥{t-2 3)+(t-2 2)+1. We also give a sufficient condition on the number of edges for a 3-uniform hypergraph containing a large clique minus 1 or 2 edges to be dense.  相似文献   

11.
The maximum number vertices of a graph G inducing a 2-regular subgraph of G is denoted by \(c_\mathrm{ind}(G)\). We prove that if G is an r-regular graph of order n, then \(c_\mathrm{ind}(G) \ge \frac{n}{2(r-1)} + \frac{1}{(r-1)(r-2)}\) and we prove that if G is a cubic, claw-free graph on order n, then \(c_\mathrm{ind}(G) > \frac{13}{20}n\) and this bound is asymptotically best possible.  相似文献   

12.
Let B be a 3-block of a finite group G with a defect group D. In this paper, we are mainly concerned with the number of characters in a particular block, so we shall use Isaacs' approach to block structure. We consider the block B of a group G as a union of two sets, namely a set of irreducible ordinary characters of G having cardinality k(B) and a set of irreducible Brauer characters of G having cardinality l(B). We calculate k(B) and l(B) provided that D is normal in G and D■x, y, z|x~(3n)=y~(3m)= z~3= [x, z] = [y, z] = 1, [x, y] = z(n m ≥ 2).  相似文献   

13.
In this paper we study graph parameters related to vertex-edge domination, where a vertex dominates the edges incident to it as well as the edges adjacent to these incident edges. First, we present new relationships relating the ve-domination to some other domination parameters, answering in the affirmative four open questions posed in the 2007 PhD thesis by Lewis. Then we provide an upper bound for the independent ve-domination number in terms of the ve-domination number for every nontrivial connected K1,k-free graph, with k ≥ 3, and we show that the independent ve-domination number is bounded above by the domination number for every nontrivial tree. Finally, we establish an upper bound on the ve-domination number for connected C5-free graphs, improving a recent bound given for trees.  相似文献   

14.
We present a tight bound on the exact maximum complexity of Minkowski sums of polytopes in ?3. In particular, we prove that the maximum number of facets of the Minkowski sum of k polytopes with m 1,m 2,…,m k facets, respectively, is bounded from above by \(\sum_{1\leq i. Given k positive integers m 1,m 2,…,m k , we describe how to construct k polytopes with corresponding number of facets, such that the number of facets of their Minkowski sum is exactly \(\sum_{1\leq i. When k=2, for example, the expression above reduces to 4m 1 m 2?9m 1?9m 2+26.  相似文献   

15.
Let G be a graph and k ≥ 2 a positive integer. Let h: E(G) → [0, 1] be a function. If \(\sum\limits_{e \mathrel\backepsilon x} {h(e) = k} \) holds for each xV (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {eE(G): h(e) > 0}. A graph G is fractional independent-set-deletable k-factor-critical (in short, fractional ID-k-factor-critical), if G ? I has a fractional k-factor for every independent set I of G. In this paper, we prove that if n ≥ 9k ? 14 and for any subset X ? V (G) we have
$${N_G}(X) = V(G)if|X| \geqslant \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ;or|{N_G}(X)| \geqslant \frac{{3k - 1}}{k}|X|if|X| < \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ,$$
then G is fractional ID-k-factor-critical.
  相似文献   

16.
A set S of vertices is independent or stable in a graph G, and we write S ∈ Ind (G), if no two vertices from S are adjacent, and α(G) is the cardinality of an independent set of maximum size, while core(G) denotes the intersection of all maximum independent sets. G is called a König–Egerváry graph if its order equals α(G) + μ(G), where μ(G) denotes the size of a maximum matching. The number def (G) = | V(G) | ?2μ(G) is the deficiency of G. The number \({d(G)=\max\{\left\vert S\right\vert -\left\vert N(S)\right\vert :S\in\mathrm{Ind}(G)\}}\) is the critical difference of G. An independent set A is critical if \({\left\vert A\right\vert -\left\vert N(A)\right\vert =d(G)}\) , where N(S) is the neighborhood of S, and α c (G) denotes the maximum size of a critical independent set. Larson (Eur J Comb 32:294–300, 2011) demonstrated that G is a König–Egerváry graph if and only if there exists a maximum independent set that is also critical, i.e., α c (G) = α(G). In this paper we prove that: (i) \({d(G)=\left \vert \mathrm{core}(G) \right \vert -\left \vert N (\mathrm{core}(G))\right\vert =\alpha(G)-\mu(G)=def \left(G\right)}\) holds for every König–Egerváry graph G; (ii) G is König–Egerváry graph if and only if each maximum independent set of G is critical.  相似文献   

17.
The edge clique cover sum number (resp. edge clique partition sum number) of a graph G, denoted by scc(G) (resp. scp(G)), is defined as the smallest integer k for which there exists a collection of complete subgraphs of G, covering (resp. partitioning) all edges of G such that the sum of sizes of the cliques is at most k. By definition, scc(G) \({\leqq}\) scp(G). Also, it is known that for every graph G on n vertices, scp(G) \({\leqq n^{2}/2}\). In this paper, among some other results, we improve this bound for scc(G). In particular, we prove that if G is a graph on n vertices with no isolated vertex and the maximum degree of the complement of G is d ? 1, for some integer d, then scc(G) \({\leqq cnd\left\lceil\log \left(({n-1})/(d-1)\right)\right\rceil}\), where c is a constant. Moreover, we conjecture that this bound is best possible up to a constant factor. Using a well-known result by Bollobás on set systems, we prove that this conjecture is true at least for d = 2. Finally, we give an interpretation of this conjecture as an interesting set system problem which can be viewed as a multipartite generalization of Bollobás’ two families theorem.  相似文献   

18.
A path in an edge-colored graph is called rainbow if any two edges of the path have distinct colors. An edge-colored graph is called rainbow connected if there exists a rainbow path between every two vertices of the graph. For a connected graph G, the minimum number of colors that are needed to make G rainbow connected is called the rainbow connection number of G, denoted by rc(G). In this paper, we investigate the relation between the rainbow connection number and the independence number of a graph. We show that if G is a connected graph without pendant vertices, then \(\mathrm{rc}(G)\le 2\alpha (G)-1\). An example is given showing that the upper bound \(2\alpha (G)-1\) is equal to the diameter of G, and so the upper bound is sharp since the diameter of G is a lower bound of \(\mathrm{rc}(G)\).  相似文献   

19.
The induced path number \(\rho (G)\) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a path. A product Nordhaus–Gaddum-type result is a bound on the product of a parameter of a graph and its complement. Hattingh et al. (Util Math 94:275–285, 2014) showed that if G is a graph of order n, then \(\lceil \frac{n}{4} \rceil \le \rho (G) \rho (\overline{G}) \le n \lceil \frac{n}{2} \rceil \), where these bounds are best possible. It was also noted that the upper bound is achieved when either G or \(\overline{G}\) is a graph consisting of n isolated vertices. In this paper, we determine best possible upper and lower bounds for \(\rho (G) \rho (\overline{G})\) when either both G and \(\overline{G}\) are connected or neither G nor \(\overline{G}\) has isolated vertices.  相似文献   

20.
The domination number γ(G) of a connected graph G of order n is bounded below by(n+2-e(G))/ 3 , where (G) denotes the maximum number of leaves in any spanning tree of G. We show that (n+2-e(G))/ 3 = γ(G) if and only if there exists a tree T ∈ T ( G) ∩ R such that n1(T ) = e(G), where n1(T ) denotes the number of leaves of T1, R denotes the family of all trees in which the distance between any two distinct leaves is congruent to 2 modulo 3, and T (G) denotes the set composed by the spanning trees of G. As a consequence of the study, we show that if (n+2-e(G))/ 3 = γ(G), then there exists a minimum dominating set in G whose induced subgraph is an independent set. Finally, we characterize all unicyclic graphs G for which equality (n+2-e(G))/ 3= γ(G) holds and we show that the length of the unique cycle of any unicyclic graph G with (n+2-e(G))/ 3= γ(G) belongs to {4} ∪ {3 , 6, 9, . . . }.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号