首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The principal feature of electroconvective jets in liquid dielectrics developing under the influence of a high-voltage external field is the large value of the EHD interaction parameter. This leads to the coupling of the hydrodynamic and electric problems. As formulated in [1, 2] the situation is reversed: the EHD interaction parameter is small. In these problems the interest is usually confined to finding the electric characteristics of the jet for a given velocity field. In [3] flows from sharp electrodes in liquid dielectrics were analyzed under two principal assumptions: nonlinear ohmic conductivity and point EHD interaction. This paper deals with the calculation of submerged electroconvective jets with ionic conductivity on the basis of the boundary-value problem formulated in [4]. In this case point EHD interaction is not assumed. It should be noted that in this formulation the problem is of practical as well as theoretical interest, for example, in connection with the problem of designing throttle EHD converters [5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 13–19, November–December, 1984.  相似文献   

2.
3.
The characteristics of the forced capillary breakup (FCB) of liquid jets have been investigated over a broad range of variation of the breakup parameters: jet orifice diameter (34–527 m), flow rate (10–5–1 cm3/sec), and excitation amplitude and frequency. The theory is compared with experiment.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 53–61, March–April, 1988.The authors are grateful to E. V. Ametistov for his constant interest and assistance.  相似文献   

4.
In this paper, we study the breakup behavior of Newtonian liquid and non‐Newtonian liquid jets with an arbitrary variation surface tension imposed along its length. The effect of duty cycle, fluid properties, and the various profiles of the surface tension is investigated. It is shown that the breakup behavior of a jet can be constructed by using the Fourier expansion of the surface tension profile. When the dimensionless wavenumber k is larger than 0.5, the jet breakup behavior is determined by the lowest frequency of the Fourier series expansion of the surface tension profile. As k decreases, higher frequency Fourier modes come to play. In general, for k between, 1∕(n+ 1) and 1∕n,n Fourier modes are needed to determine the jet breakup behavior. The current nonlinear model differs from the existing linear slender jet model in the literature in several ways. While the principle of superposition is valid for the linear model, it is not generally valid for the current nonlinear model. For the linear model, the jet will never break up when the wavenumber is larger than 1. The current model, however, shows clearly that the jet can indeed break up when the wavenumber is larger than 1. Furthermore, the current nonlinear model predicts a breakup time substantially higher than that from the linear model.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The flow of annular liquid jets at high Reynolds numbers is analysed by means of the finite element method and the full‐Newton iteration scheme. Results have been obtained for various values of the inner to the outer diameter ratio and for non‐zero surface tension, using extremely long meshes. The annular film moves far from the symmetry axis at low values of the Reynolds number. At higher Reynolds numbers, the film moves towards the axis of symmetry and appears close to very far downstream, forming a round jet. Asymptotic results for the radius of the resulting round jet are provided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
The purpose of this investigation is to study the effect of the orifice geometry on liquid breakup. In order to develop a better understanding of the liquid jet breakup, investigations were carried out in two steps—study of low-pressure liquid jet breakup and high-pressure fuel atomization. This paper presents the experimental investigations conducted to study the flow behavior of low-pressure water jets emanating from orifices with non-circular geometries, including rectangular, square, and triangular shapes and draws a comparison with the flow behavior of circular jets. The orifices had approximately same cross-sectional areas and were machined by electro-discharge machining process in stainless steel discs. The liquid jets were discharged in the vertical direction in atmospheric air at room temperature and pressure conditions. The analysis was carried out for gage pressures varying from 0 to 1,000 psi (absolute pressures from 0.10 to 6.99 MPa). The flow behavior was analyzed using high-speed visualization techniques. To draw a comparison between flow behavior from circular and non-circular orifices, jet breakup length and width were measured. The flow characteristics were analyzed from different directions, including looking at the flow from the straight edges of the orifices as well as their sharp corners. The non-circular geometric jets demonstrated enhanced instability as compared to the circular jets. This has been attributed to the axis-switching phenomenon exhibited by them. As a result, the non-circular jets yielded shorter breakup lengths as compared to the circular jets. In order to demonstrate the presence of axis-switching phenomenon in square and triangular jets, the jet widths were plotted along the axial direction. This technique clearly demonstrated the axis switching occurring in square and triangular jets, which was not clearly visible unlike the case of rectangular jets. To conclude, non-circular geometry induces greater instabilities in the liquid jets, thereby leading to faster disintegration. Thus, non-circular orifice geometries can provide a cheaper solution of improving liquid breakup and thus may enhance fuel atomization as compared to the precise manufacturing techniques of drilling smaller orifices or using costly elevated fuel injection pressure systems.  相似文献   

7.
A. L. Yarin 《Fluid Dynamics》1983,18(1):134-136
Quasi-one-dimensional equations for the three-dimensional motion of thin liquid jets have been derived by Entov and the present author [1, 2] from the balance integral equations for the mass, momentum, and angular momentum written down for a jet section. Simplified equations of this kind make it possible, in particular, to investigate with comparative ease the motion of bending jets and also the loss of stability of jets moving in air associated with the development of kinks, etc. It is of interest to obtain quasi-one-dimensional equations of jet motion by direct integration over the section of a thin jet of the three-dimensional differential equations of hydrodynamics. In the present note, this approach is illustrated by the example of bending of a jet in a plane.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 161–163, January–February, 1983.  相似文献   

8.
9.
An experimental study has been conducted to investigate the hydraulic characteristics of a plain orifice nozzle issuing pressurized high-temperature liquid hydrocarbon, in order to simulate injection of aviation fuel after being used as coolant in an active cooling system in a hypersonic flight vehicle. The fuel was heated to 553 K (280°C) using an induction heater, at an upstream pressure of up to 1.0 MPa, and injected to atmospheric pressure conditions through a sharp-edged orifice of diameter 0.7 mm and length 4.3 mm. It has been observed that the isothermal lines on the plane of the mass flow rate versus the square root of the pressure drop (ΔP) were clearly affected by increased fuel temperatures, and the discharge coefficient (Cd) decreased sharply with increasing fuel injection temperature (Tinj) above the fuel boiling point of 460 K. The Reynolds number (Re) for three ΔPs with respect to Tinj reached maxima and then began to decrease as Tinj increased for each ΔP case, and the fuel temperature of maximum Re at a given pressure condition increased as ΔP increased. The effects of cavitation on the hydraulic characteristics of the high temperature fuel were explored by representing Cd with respect to three cavitation numbers and dissipation efficiency. The behaviors of Cd showed a clear dependency on cavitation number, and all of the results collapsed to a single curve, regardless of ΔP. In addition, the curve indicated that the Cd characteristics was divided into non-cavitating and cavitating regions by the critical cavitation numbers near the fuel boiling point, and a sharp decrease in Cd was found to be typical in the cavitating region. The relationship between Cd and Re showed that when Tinj exceeded the boiling point the high temperature liquid jets experienced a sharp decrease in Cd at a determined Reynolds number, due to the collapse of the mass flow rate induced by the choked cavitaiton.  相似文献   

10.
This paper describes a preliminary investigation of the characteristics of high-speed water jets injected into water from an orifice. The high-speed jets were generated by the impact of a projectile launched by a horizontal single-stage powder gun and submerged in a water test chamber. The ensuing impact-driven high-speed water jets in the water were visualized by the shadowgraph technique, and the images were recorded by a high-speed digital video camera. The processes following such jet injection into water, the jet-induced shock waves, shock wave propagation, the bubble behavior, bubble collapse-induced rebound shock waves and bubble cloud re-generation were observed. Peak over-pressures of about 24 and 35 GPa measured by a Polyvinylidence difluoride (PVDF) piezoelectric film pressure sensor were generated by the jet impingement and the bubble impingement, respectively. The peak over-pressure was found to decrease exponentially as the stand-off distance between the PVDF pressure sensor and the nozzle exit increases.  相似文献   

11.
Generation of hypersonic liquid fuel jets accompanying self-combustion   总被引:2,自引:0,他引:2  
Aerodynamic behavior of pulsed hypersonic light oil jets injected at 2 km/s and 3 km/s is presented. Auto-ignition and combustion of the fuel during the injection process were visualized. The combustion around the disintegrating jet was enhanced by liquid atomization created by the very high injection pressure as well as the interfacial instability of the hypersonic jet. The jets were injected into air at low pressure and also that premixed with helium and air. It was found that the combustion was reduced in both cases despite the higher jet speed and the increased gas pressure. Received 5 November 1998 / Accepted 24 February 1999  相似文献   

12.
13.
14.
Bag breakup of nonturbulent liquid jets in crossflow   总被引:1,自引:0,他引:1  
An experimental investigation of the bag breakup of round nonturbulent liquid jets in gaseous crossflow at room temperature and pressure is described. Pulsed photography, pulsed shadowgraphy, and high-speed imaging were used to observe the column and surface waves along the liquid jet and the formation and breakup of bags. Measurements included: wavelengths of column and surface waves, jet velocities, the number of bags along the liquid jet, the number of nodes per bag, droplets sizes and velocities, and trajectories of droplets. Present results show that the column waves of a nonturbulent liquid jet in crossflow within bag breakup regime can be explained based on Rayleigh–Taylor instability. The number of nodes per bag affected the breakup mechanism of the bags. Three distinctive sizes of droplets were produced due the breakup of the bag membrane, the ring strings and the ring nodes. The size of the droplets resulting from the breakup of the bag membrane was constant independent of the crossflow Weber number. Finally different trajectories were observed for the three groups of droplets.  相似文献   

15.
This paper presents the results of an experimental study on liquid jets discharging from elliptical orifices into still ambient air. The experiments were conducted with a set of elliptical orifices of approximately same area of cross section but varying orifice aspect ratio using water and water–glycerol mixture as experimental fluids. The flow behavior of liquid jets was analyzed using their photographs captured by an imaging system. The measurements obtained for the elliptical liquid jets were compared with the circular liquid jets discharging from a circular orifice of the same area of cross section. Elliptical geometry of the orifice results in a flow process by which the emanating liquid jet periodically switches its major and minor axes as it flows downstream of the orifice. In this paper, we attempt to characterize the axis-switching process through its wavelength and amplitude. For a given elliptical orifice, the axis-switching process is dominantly seen in a particular range of flow conditions. The effects of the orifice aspect ratio and liquid viscosity on the axis-switching process are revealed through this study. The experimental results on jet breakup show that axis-switching process has a destabilizing effect on elliptical liquid jets within a particular range of flow conditions and it results in shorter breakup lengths compared to the circular jet. The extent to which axis-switching destabilizes the jet is dictated by the viscosity of liquid. An increase in orifice aspect ratio destabilizes elliptical liquid jets with low viscosity like water; however, this behavior seems to get obscured in water–glycerol mixture elliptical jets due to high viscosity.  相似文献   

16.
This paper addresses the issue of the air-entrainment process by a vertical plunging liquid jet. A non-dimensional physical analysis, inspired by the literature on the stability of free jets submitted to an aerodynamic interaction, was developed and yielded two correlation equations for the laminar and the turbulent plunging jets. These correlation equations allow the volumetric flow rate of the air carryunder represented by the Weber number of entrainment We n to be predicted. The plunging jets under consideration issued from circular tubes long enough to achieve a fully developed flow at the outlet. A sensitive technique based on a rising soap meniscus was developed to measure directly the volumetric flow rate of the air carryunder. Our data are compared with other experimental data available in the literature; they also stand as a possible database for future theoretical modelling. Received: 2 November 2000/Accepted: 13 November 2001  相似文献   

17.
The electrical and atomization performance of a plane?Cplane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35?bar corresponding to injection velocities of up to 50?m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15?C35?bar range, and an arithmetic mean diameter D 10 as low as 0.2d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460?C469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q v?~?2?C/m3 cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number (We j) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q v?~?6?C/m3, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that ??turbulent?? primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets.  相似文献   

18.
19.
Experiments with large diameter gravity driven impacting liquid jets   总被引:2,自引:0,他引:2  
Storr  G. J.  Behnia  M. 《Experiments in fluids》1999,27(1):60-69
 The phenomenon of a liquid jet released under gravity and falling through or impacting onto another liquid before colliding with an obstructing solid surface has been studied experimentally under isothermal conditions. Usually the jet diameter was sufficiently large to ensure jet coherency until collision. Direct flow visualization was used to study jets released into water pools with no air head space and jets impacting onto water pools after falling through an air head space. It is shown that distances predicting the onset of buoyancy and the entrainment of air using derivations from continuous plunging jets, are not applicable for impacting jets. The morphology of jet debris after collision with the solid surfaces correlates with the wetting properties of the jet liquid on the surface. Received: 28 November 1997 / Accepted: 21 May 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号