首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of oxidation and reduction of Al(2)O(3) supported Rh nanoparticles have been determined on a 50 millisecond timescale using energy dispersive EXAFS (EDE).  相似文献   

2.
Comparison of the reactivity of different Pd-O species in CO oxidation   总被引:1,自引:0,他引:1  
The reactivity of several Pd-O species toward CO oxidation was compared experimentally, making use of chemically, structurally and morphologically different model systems such as single-crystalline Pd(111) covered by adsorbed oxygen or a Pd(5)O(4) surface oxide layer, an oriented Pd(111) thin film on NiAl oxidized toward PdO(x) suboxide and silica-supported uniform Pd nanoparticles oxidized to PdO. The oxygen reactivity decreased with increasing oxidation state: O(ad) on metallic Pd(111) exhibited the highest reactivity and could be reduced within a few minutes already at 223 K, using low CO beam fluxes around 0.02 ML s(-1). The Pd(5)O(4) surface oxide on Pd(111) could be reacted by CO at a comparable rate above 330 K using the same low CO beam flux. The more deeply oxidized Pd(111) thin film supported on NiAl was already much less reactive, and reduction in 10(-6) mbar CO at T > 500 K led only to partial reduction toward PdO(x) suboxide, and the metallic state of Pd could not be re-established under these conditions. The fully oxidized PdO nanoparticles required even rougher reaction conditions such as 10 mbar CO for 15 min at 523 K in order to re-establish the metallic state. As a general explanation for the observed activity trends we propose kinetic long-range transport limitations for the formation of an extended, crystalline metal phase. These mass-transport limitations are not involved in the reduction of O(ad), and less demanding in case of the 2-D Pd(5)O(4) surface oxide conversion back to metallic Pd(111). They presumably become rate-limiting in the complex separation process from an extended 3-D bulk oxide state toward a well ordered 3-D metallic phase.  相似文献   

3.
CO加氢反应机理一直是许多化学工作者感兴趣的课题.Rh催化剂因其优良的性能而被用于 CO加氢机理研  相似文献   

4.
CO oxidation was investigated on various powder oxide supported Pd catalysts by temperature-programmed reaction.The pre-reduced catalysts show significantly higher activities than the pre-oxidized ones.Model studies were performed to better understand the oxidation state,reactivities and stabilities of partially oxidized Pd surfaces under CO oxidation reaction conditions using an in situ infrared reflection absorption spectrometer(IRAS).Three O/Pd(100)model surfaces,chemisorbed oxygen covered surface,surface oxide and bulk-like surface oxide,were prepared and characterized by low-energy electron diffraction(LEED)and Auger electron spectroscopy(AES).The present work demonstrates that the oxidized palladium surface is less active for CO oxidation than the metallic surface,and is unstable under the reaction conditions with sufficient CO.  相似文献   

5.
Energy dispersive EXAFS (EDE) and diffuse reflectance infrared spectroscopy (DRIFTS) are combined synchronously at high time resolution (17 Hz) to probe how NO(g) reacts with gamma-Al(2)O(3) supported, metallic Rh nanoparticles of an average 11 A diameter; a bent nitrosyl species is considered to be the key to the formation of N(2)O.  相似文献   

6.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

7.
考察了Rh/Al2O3,Rh/SiO2和Rh/CeO2催化剂上金属-载体间相互作用对CH4/CO2重整反应抗积炭性能的影响,并与反应前后催化剂的程序升温还原和程序升温氧化(TPO)测试结果相关联.实验发现,Rh与Al2O3和SiO2载体间的相互作用越强,催化剂还原后Rh的分散度越高,晶粒越小,高分散的Rh表面生成的碳物种CHx越多,其作为活泼的反应中间体越易与CO2反应生成CO和H2.而游离态的Rh还原后晶粒较大,生成的碳物种与CO2反应能力较低,从而导致催化剂失活.TPO和CO2脉冲实验结果表明,反应过程中Rh/CeO2催化剂上反应生成的CHx物种比Rh/Al2O3和Rh/SiO2上的CHx物种更活泼.同时由于Rh-CeO2间独特的相互作用,部分CeO2还原后生成CeO2-x和氧空位,促进CO2分子的活化解离,导致生成的表面氧容易与CHx反应,从而抑制催化剂积炭.  相似文献   

8.
The effect of pretreatments as well as of rhodium precursor and of the support over the morphology of Rh nanoparticles were investigated by Fourier transform infrared (FT-IR) spectroscopy of adsorbed CO. Over a Rh/alumina catalyst, both metallic Rh particles, characterized by IR bands in the range 2070-2060 cm-1 and 1820-1850 cm-1, and highly dispersed rhodium species, characterized by symmetric and asymmetric stretching bands of RhI(CO)2 gem-dicarbonyl species, are present. Their relative amount changes following pretreatments with gaseous mixtures, representative of the catalytic partial oxidation (CPO) reaction process. The Rh metal particle fraction decreases with respect to the Rh highly dispersed fraction in the order CO approximately CO/H2 > CH4/H2O, CH4/O2 > CH4 > H2. The metal particle dimensions decrease in the order CH4/O2 > H2 > CH4/H2O > CO > CO/H2. Grafting from a carbonyl rhodium complex also increases the amount and the dimensions of Rh0 particles at the catalyst surface. Increasing the ratio (extended rhodium metal particles/highly dispersed Rh species) allows a shorter conditioning process. The surface reconstruction phenomena going on during catalytic activity are related to this effect.  相似文献   

9.
The effects of ceria and zirconia on the structure–function properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ‐Al2O3) during CO exposure are described. Ceria and zirconia are introduced through two preparation methods: 1) ceria is deposited on γ‐Al2O3 from [Ce(acac)3] and rhodium metal is subsequently added, and 2) through the controlled surface modification (CSM) technique, which involves the decomposition of [M(acac)x] (M=Ce, x=3; M=Zr, x=4) on Rh/γ‐Al2O3. The structure–function correlations of ceria and/or zirconia‐doped rhodium catalysts are investigated by diffuse reflectance infrared Fourier‐transform spectroscopy/energy‐dispersive extended X‐ray absorption spectroscopy/mass spectrometry (DRIFTS/EDE/MS) under time‐resolved, in situ conditions. CeOx and ZrO2 facilitate the protection of Rh particles against extensive oxidation in air and CO. Larger Rh core particles of ceriated and zirconiated Rh catalysts prepared by CSM are observed and compared with Rh/γ‐Al2O3 samples, whereas supported Rh particles are easily disrupted by CO forming mononuclear Rh geminal dicarbonyl species. DRIFTS results indicate that, through the interaction of CO with ceriated Rh particles, a significantly larger amount of linear CO species form; this suggests the predominance of a metallic Rh phase.  相似文献   

10.
室温条件下高效消除CO具有重要的意义,但目前仍具有极大的挑战.考虑到实际应用环境中存在的水汽,实现具有应用价值的CO消除过程的关键是设计耐湿性好,且能够在室温甚至更低温度下具有较高CO氧化活性的催化剂.以Hopcalite (Cu-Mn-Ox)和Co3O4为代表的氧化物和负载型Au基催化剂具有优异的低温CO氧化活性,但存在耐湿性差、催化性能重复性不好等缺点,因而限制了其实际应用.铂族金属催化剂凭借优异的稳定性和耐湿性成为目前最广泛应用的尾气净化催化剂.但是由于铂金属位点强吸附CO的毒化作用,CO氧化工作温度多在200℃以上,从而限制了其在室内空气净化、燃料电池工业氢源净化以及汽车发动机冷启动阶段尾气净化等过程中的实际应用.研究人员尝试调节金属粒子尺寸、金属-载体界面、双金属结构及助剂效应等以促进O2的活化或者削弱CO的吸附,尽管取得了一定的进展,但仍缺少一种具有普适性和实际CO消除应用前景的铂族金属基催化体系.本文利用新型Fe(OH)x负载亚纳米Rh催化剂作为室温条件下CO湿氧化的典型例子,研究H<...  相似文献   

11.
Supported gold nanoparticles have generated an immense interest in the field of catalysis due to their extremely high reactivity and selectivity. Recently, alloy nanoparticles of gold have received a lot of attention due to their enhanced catalytic properties. Here we report the synthesis of silica supported AuCu nanoparticles through the conversion of supported Au nanoparticles in a solution of Cu(C(2)H(3)O(2))(2) at 300 °C. The AuCu alloy structure was confirmed through powder XRD (which indicated a weakly ordered alloy phase), XANES, and EXAFS. It was also shown that heating the AuCu/SiO(2) in an O(2) atmosphere segregated the catalyst into a Au-CuO(x) heterostructure between 150 °C to 240 °C. Heating the catalyst in H(2) at 300 °C reduced the CuO(x) back to Cu(0) to reform the AuCu alloy phase. It was found that the AuCu/SiO(2) catalysts were inactive for CO oxidation. However, various pretreatment conditions were required to form a highly active and stable Au-CuO(x)/SiO(2) catalyst to achieve 100% CO conversion below room-temperature. This is explained by the in situ FTIR result, which shows that CO molecules can be chemisorbed and activated only on the Au-CuO(x)/SiO(2) catalyst but not on the AuCu/SiO(2) catalyst.  相似文献   

12.
A Cu(111) surface displays a low activity for the oxidation of carbon monoxide (2CO + O(2) → 2CO(2)). Depending on the temperature, background pressure of O(2), and the exposure time, one can get chemisorbed O on Cu(111) or a layer of Cu(2)O that may be deficient in oxygen. The addition of ceria nanoparticles (NPs) to Cu(111) substantially enhances interactions with the O(2) molecule and facilitates the oxidation of the copper substrate. In images of scanning tunneling microscopy, ceria NPs exhibit two overlapping honeycomb-type moire? structures, with the larger ones (H(1)) having a periodicity of 4.2 nm and the smaller ones (H(2)) having a periodicity of 1.20 nm. After annealing CeO(2)/Cu(111) in O(2) at elevated temperatures (600-700 K), a new phase of a Cu(2)O(1+x) surface oxide appears and propagates from the ceria NPs. The ceria is not only active for O(2) dissociation, but provides a much faster channel for oxidation than the step edges of Cu(111). Exposure to CO at 550-750 K led to a partial reduction of the ceria NPs and the removal of the copper oxide layer. The CeO(x)/Cu(111) systems have activities for the 2CO + O(2) → 2CO(2) reaction that are comparable or larger than those reported for surfaces of expensive noble metals such as Rh(111), Pd(110), and Pt(100). Density-functional calculations show that the supported ceria NPs are able to catalyze the oxidation of CO due to their special electronic and chemical properties. The configuration of the inverse oxide/metal catalyst opens new interesting routes for applications in catalysis.  相似文献   

13.
负载型金催化剂在CO氧化反应中具有良好的低温活性,受到了研究者的广泛关注,其催化性能与载体的性质密切相关.氧化铝具有廉价易得、比表面积大和热稳定性好等优点.然而,作为一种非还原性载体,氧化铝提供活性氧物种的能力差,与还原性载体相比催化剂的CO氧化活性较低.理论计算和实验结果表明,在金催化剂中引入过渡金属镍能够有效促进氧分子在催化剂表面的吸附和活化,从而提升金催化剂活性.此外,过渡金属的存在能够提高金的分散度,增加活性位数目,防止在高温预处理过程中金颗粒的烧结,从而提高催化剂的活性和稳定性.基于上述考虑,本文在氧化铝纳米片合成过程中原位引入硝酸镍,以实现对氧化铝载体的改性,然后负载金并应用于CO氧化反应.结果表明,当载体中的Ni/Al摩尔比为0.05,金负载量为1wt%时,采用还原性气氛对催化剂进行预处理可以得到具有CO氧化性能优良的金催化剂, 20 oC下CO转化率即可达100%.预处理气氛能够显著影响催化活性,采用还原性气氛预处理后催化剂活性明显优于氧化性气氛预处理.采用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、氢气程序升温还原(H2-TPR)、氧气程序升温脱附(O2-TPD)、CO吸附原位红外光谱(CO-DRIFT)和X射线光电子能谱(XPS)等表征手段进一步研究了镍掺杂对Au/Al2O3催化剂上CO氧化反应的促进作用机制.XRD测试未观察到明显的金或镍衍射峰,表明金或镍物种均为高分散.HRTEM结果进一步证实,引入镍物种后金颗粒的粒径由3.6 nm减小为2.4 nm,表明镍掺杂有助于提高金的分散度.而XPS结果显示,镍掺杂催化剂中金与镍存在电子转移,而镍仍以Ni O为主.H2-TPR结果表明,镍掺杂的催化剂前驱体中的金物种更容易被还原.O2-TPD结果证实,镍掺杂催化剂能够引入更多的氧空位,促进氧分子的吸附和活化,从而促进CO氧化反应的进行.CO-DRIFT结果表明,相比于氧化性气氛,采用还原性气氛预处理后金物种的电子云密度增加, CO吸附增强.而对于镍掺杂的催化剂,金物种吸附CO分子的能力进一步提高,有利于CO氧化反应的进行.综上,镍掺杂能够有效提高催化剂中金的分散度,增强催化剂对CO的吸附,促进氧气分子的吸附和活化,从而提高了催化剂的CO氧化活性.  相似文献   

14.
CO在Ni/Al2O3催化剂上的歧化和氧化反应   总被引:7,自引:2,他引:7  
Pena等[1]认为CO的歧化反应是甲烷部分氧化制合成气反应中积碳的来源之一.Claridge等[2]在研究不同温度下负载型Ni催化剂对纯甲烷和纯CO的碳形成的催化作用时发现,在不同温度下催化剂对甲烷分解和CO歧化反应的催化程度不同,在甲烷部分氧化的...  相似文献   

15.
Dimeric rhodium(I) bis(carbonyl) chloride, [Rh(CO)(2)(mu-Cl)](2), is found to be a useful and convenient starting material for the syntheses of new cationic carbonyl complexes of both rhodium(I) and rhodium(III). Its reaction with the Lewis acids AlCl(3) or GaCl(3) produces in a CO atmosphere at room temperature the salts [Rh(CO)(4)][M(2)Cl(7)] (M = Al, Ga), which are characterized by Raman spectroscopy and single-crystal X-ray diffraction. Crystal data for [Rh(CO)(4)][Al(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.705(3), b = 9.800(2), c = 10.268(2) A; alpha = 76.52(2), beta = 76.05(2), gamma = 66.15(2) degrees; V = 856.7(5) A(3); Z = 2; T = 293 K; R(1) [I > 2sigma(I)] = 0.0524, wR(2) = 0.1586. Crystal data for [Rh(CO)(4)][Ga(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.649(1), b = 9.624(1), c = 10.133(1) A; alpha = 77.38(1), beta = 76.13(1), gamma = 65.61(1) degrees; V = 824.4(2) A(3); Z = 2; T = 143 K; R(1) [I > 2sigma(I)] = 0.0358, wR(2) = 0.0792. Structural parameters for the square planar cation [Rh(CO)(4)](+) are compared to those of isoelectronic [Pd(CO)(4)](2+) and of [Pt(CO)(4)](2+). Dissolution of [Rh(CO)(2)Cl](2) in HSO(3)F in a CO atmosphere allows formation of [Rh(CO)(4)](+)((solv)). Oxidation of [Rh(CO)(2)Cl](2) by S(2)O(6)F(2) in HSO(3)F results in the formation of ClOSO(2)F and two seemingly oligomeric Rh(III) carbonyl fluorosulfato intermediates, which are easily reduced by CO addition to [Rh(CO)(4)](+)((solv)). Controlled oxidation of this solution with S(2)O(6)F(2) produces fac-Rh(CO)(3)(SO(3)F)(3) in about 95% yield. This Rh(III) complex can be reduced by CO at 25 degrees C in anhydrous HF to give [Rh(CO)(4)](+)((solv)); addition of SbF(5) at -40 degrees C to the resulting solution allows isolation of [Rh(CO)(4)][Sb(2)F(11)], which is found to have a highly symmetrical (D(4)(h)()) [Sb(2)F(11)](-) anion. Oxidation of [Rh(CO)(2)Cl](2) in anhydrous HF by F(2), followed in a second step by carbonylation in the presence of SbF(5), is found to be a simple, straightforward route to pure [Rh(CO)(5)Cl][Sb(2)F(11)](2), which has previously been structurally characterized by us. All new complexes are characterized by vibrational and NMR spectroscopy. Assignment of the vibrational spectra and interpretation of the structural data are supported by DFT calculations.  相似文献   

16.
In preferential CO oxidation in H2-rich gas, K-Pt/Al2O3(K/Pt = 10) was very effective in decreasing CO concentration below 10 ppm in the 375-410 K range, and the turnover frequency of the K-Pt/Al2O3 was 20 times as high as that of Pt/Al2O3 at 353 K; furthermore, the activity of CO oxidation was promoted drastically by the presence of H2.  相似文献   

17.
利用CO和NO作为双探针分子对Rh2Co2/Al2O3的吸附中心类型和吸附性能进行了详细的研究。结果表明Rh2Co2/Al2O3上存在Rh上的孪生和桥式CO吸附中心以及Co上的线式CO吸附中心。其中Rh上的孪生和桥式CO吸附中心对CO和NO的吸附性能与Rh4/Al2O3上的孪生和桥式CO中心相似。Co上的线式CO吸附中心以预吸附的CO能被NO取代, 预吸附的NO不能被CO取代而区别于Rh4/Al2O3上的Rh的线式CO吸附中心; 又以既能吸附CO又能吸附NO而不同于Co2/Al2O3和Rh+Co/Al2O3上的Co中心。与母体簇的结构相关联, 表明H2还原后的Rh2Co2/Al2O3上Rh2Co2(CO)12簇结构仍保持, 且Rh-Co相互作用强。  相似文献   

18.
The photochemical production and chemical reactivity of a new coordinatively unsaturated rhodium monocarbonyl species on the surface of dealuminated zeolite Y over a temperature range of 300-420 K and a pressure range from 10(-5) to 20 Torr has been studied. Using high vacuum techniques and transmission infrared spectroscopy, ultraviolet irradiation (350 +/- 50 nm) of supported Rh(CO)(2) surface species led to the production of stable, but reactive, =Rh(CO) surface species, characterized by an infrared band at 2023 cm(-1). The coordinatively unsaturated =Rh(CO) species convert to less reactive and coordinatively saturated Rh(CO) by thermal treatment above 370 K. The Rh(CO) species were characterized by an infrared band at 2013 cm(-1). An explanation of the mode of bonding of the rhodium monocarbonyl species to the zeolite surface is provided. Coordinatively unsaturated =Rh(CO) species captured N(2), H(2), and O(2) gas molecules near room temperature to produce a variety of mixed ligand rhodium surface complexes of the form Rh(CO)(N(2)), Rh(CO)(H(2)), Rh(CO)(H)(2), Rh(CO)(H), Rh(CO)(O), and Rh(O). Infrared band assignments for the new species are provided. The work provides new insight into the photochemical behavior of Rh(CO)(2) species supported on high-area zeolite materials and may improve our understanding of the role of active rhodium monocarbonyl species in the development of heterogeneous photocatalysts.  相似文献   

19.
Active surfaces for CO oxidation on palladium in the hyperactive state   总被引:1,自引:0,他引:1  
Hyperactivity was previously observed for CO oxidation over palladium, rhodium, and platinum surfaces under oxygen-rich conditions, characterized by reaction rates 2-3 orders higher than those observed under stoichiometric reaction conditions [Chen et al. Surf. Sci. 2007, 601, 5326]. In the present study, the formation of large amounts of CO(2) and the depletion of CO at the hyperactive state on both Pd(100) and polycrystalline Pd foil were evidenced by the infrared intensities of the gas phase CO(2) and CO, respectively. The active surfaces at the hyperactive state for palladium were characterized using infrared reflection absorption spectroscopy (IRAS, 450-4000 cm(-1)) under the realistic catalytic reaction condition. Palladium oxide on a Pd(100) surface was reduced eventually by CO at 450 K, and also under CO oxidation conditions at 450 K. In situ IRAS combined with isotopic (18)O(2) revealed that the active surfaces for CO oxidation on Pd(100) and Pd foil are not a palladium oxide at the hyperactive state and under oxygen-rich reaction conditions. The results demonstrate that a chemisorbed oxygen-rich surface of Pd is the active surface corresponding to the hyperactivity for CO oxidation on Pd. In the hyperactive region, the CO(2) formation rate is limited by the mass transfer of CO to the surface.  相似文献   

20.
CeO2-promoted Ni/Al2O3-ZrO2 (Ni/Al2O3-ZrO2-CeO2) catalysts were prepared by a direct sol-gel process with citric acid as gelling agent. The catalysts used for the methane reforming with CO2 was studied by infrared spectroscopy (IR), thermal gravimetric analysis (TGA), microscopic analysis, X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The catalytic performance for CO2 reforming of methane to synthesis gas was investigated in a continuous-flow micro-reactor under atmospheric pressure. TGA, IR, XRD and microscopic analysis show that the catalysts prepared by the direct sol-gel process consist of Ni particles with a nanostructure of around 5 nm and an amorphous-phase composite oxide support. There exists a chemical interaction between metallic Ni particles and supports, which makes metallic Ni well dispersed, highly active and stable. The addition of CeO2 effectively improves the dispersion and the stability of Ni particles of the prepared catalysts, and enhances the adsorption of CO2 on the surface of catalysts. The catalytic tests for methane reforming with CO2 to synthesis gas show that the Ni/Al2O3-ZrO2-CeO2 catalysts show excellent activity and stability compared with the Ni/Al2O3 catalyst. The excellent catalytic activity and stability of the Ni/Al2O3-ZrO2-CeO2 are attributed to the highly, uniformly and stably dispersed small metallic Ni particles, the high reducibility of the Ni oxides and the interaction between metallic Ni particles and the composite oxide supports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号