首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

2.
Summary R2PNCS (R=Me or Ph) obtained in CH2Cl2 solution from R2PCl and AgSCN, is unstable in the absence of solvent, yet yields stable complexes of stoichiometry [MLCln] (L=R2PNCS) when reactedin situ with metal chlorides MCln (M=Mn or Co; n=2, V or Fe, n=3). Physico-chemical data suggest that the > PNCS moiety retains its identity in the complexes, providing P and S as coordinating sites, and coordination is accompanied by delocalization of metal electrons through an additional overlap between empty P(3d) and metal (3d) orbitals. Probable geometries for the complexes have been ascertained from magnetic susceptibility and diffuse reflectance spectral studies.  相似文献   

3.
4.
Two diorganotin(IV)-NANA complexes (NANA (1) = beta-N-acetyl-Neuraminic Acid = 5-amino-3,5-dideoxy-D-glycero-beta-D-galactononulosic acid) with formula Me(2)Sn(iv)NANA (2) and Bu(2)Sn(IV)NANA (3) were synthesized and characterized by (1)H, (13)C and (119)Sn NMR spectroscopy, both in D(2)O and DMSO-d(6) solutions. The experimental data in DMSO suggested the monosaccharide bidentate chelation via O1 carboxylate and vicinal O2 alkoxide atoms, which, in D(2)O, can be dynamically extended to a third binding site (O8 atom) of the pendant chain. Coordination at the tin atom is discussed on the basis of experimental NMR data and DFT calculation.  相似文献   

5.
The metathesis reaction of InCl3 with Me2NCH2CH2SNa or the redox reaction of indium metal with elemental iodine and the disulfide (Me2NCH2CH2S)2 yield the indium bis(thiolate) complexes (Me2NCH2CH2S)2InX [X = Cl (3) and I (4)], respectively. Compounds 3 and 4 may be further reacted with the appropriate sodium thiolate salts to afford the heteroleptic tris(thiolate) complexes (Me2NCH2CH2S)2InSR [R = 4-MeC6H4 (5), 4-MeOC6H4 (6), and Pr (7)]. Reaction of 2,6-Me2C6H3SNa with 4 affords (Me2NCH2CH2S)2InS(2,6-Me2C6H3) (8), while no reaction is observed with 3, suggesting a greater reactivity for 4. All isolated compounds were characterized by elemental analysis, melting point, and Fourier transform IR and 1H and 13C{1H} NMR spectroscopies. X-ray crystallographic analyses of 3-6 show a bicyclic arrangement and a distorted trigonal-bipyramidal geometry for In in all cases. The two sulfur and one halogen (3 and 4) or three sulfur (5 and 6) atoms occupy equatorial positions, while the nitrogen atoms of the chelating (dimethylamino)ethanethiolate ligands occupy the axial positions. The metric parameters of the (Me2NCH2CH2S)2In framework were found to change minimally upon variation of the X/SR ligand, while the solubility of the corresponding compounds in organic solvents varied greatly. 1H NMR studies in D2O showed that 6 and 7 react slowly with an excess of the tripeptide l-glutathione and that the rate of reaction is affected by the pendant thiolate ligand -SR.  相似文献   

6.
A series of 2,6-bis(imino)pyridyl Co(II) complexes of the general formulas [2,6-(ArNCMe)2C5H3N]CoCl2 (Ar = -C6H5, 3a; 2-MeC6H4, 3b; 2-EtC6H4, 3c; 2-iPrC6H4, 3d; 2,6-iPr2C6H3, 3e; 4-iPrC6H4, 3f; 4-FC6H4, 3g; 4-CF3C6H4, 3h; 2-FC6H4, 3i; 2,6-F2C6H3, 3j; 2-Me-4-FC6H3, 3k and 2,6-Me2-4-FC6H2, 3l) and [2,6-(ArNCH)2C5H3N]CoCl2 (Ar = -C6H5, 3m; 2-EtC6H4, 3n and 4-iPrC6H4, 3o) have been synthesized and characterized. The structures of new complexes 3a, 3f-3h and 3m-3o are further confirmed by X-ray crystallography. All complexes adopt distorted trigonal bipyramidal configuration with the equatorial plane formed by the pyridyl nitrogen atoms and the two chlorine atoms. In the complexes 3m and 3o, three aromatic rings are essentially coplanar, which is in sharp contrast to the other complexes, where three rings are almost orthogonal to each other. With methylaluminoxane (MAO) as cocatalyst in toluene at room temperature, the complexes show moderate to high conversion (42-99%) in butadiene polymerization, producing polybutadiene with tunable cis-1,4 structure (77.5-97%) and controllable molecular weight and molecular weight distribution. The catalytic activity, selectivity as well as the molecular weight and molecular weight distribution of the resultant polymer are found to be dependent on the size and nature of substituents on iminoaryl rings and their positions located. By deliberately tuning the ligand structure, more efficient catalyst in terms of high activity and high selectivity can be obtained.  相似文献   

7.
The N-bonded nitrile complexes -[Co(tetren)NCR]3+ (R=Me, Ph, p-MeOC6 H4) have been prepared by the reaction of -[Co(tetren)OH2]3+ with the corresponding nitrile. The kinetics of base hydrolysis have been studied by pH-stat methods. The reactions involve an SN1CB displacement of the nitrile to give the hydroxopentamine; nucleophilic attack at the nitrile carbon to give the corresponding carboxamido complex does not occur. NaN3 reacts with the nitrile complexes in slightly acidic solution (pH ca. 5.7) to give the tetrazolato complexes [Co(tetren)N4 R]2+ (R=Me, Ph) which have been characterised. The reaction of azide ion with -[Co(tetren)NCMe]3+ has been studied kinetically. The reaction is biphasic involving the initial rapid formation of the N1-bonded (5-methyltetrazolato) pentaminecobalt(III) complex with k=2×10–2dm3 mol–1s–1 at 25°C followed by the slow isomerisation to the N2-bonded complex with k=3.5×10–5s–1 at pH 5.7.  相似文献   

8.
Alkylzinc complexes, (Ttz(R,Me))ZnR' (R = tBu, Ph; R' = Me, Et), show interesting reactivity with acids, bases and water. With acids (e.g. fluorinated alcohols, phenols, thiophenol, acetylacetone, acetic acid, HCl and triflic acid) zinc complexes of the conjugate base (CB), (Ttz(R,Me))ZnCB, are generated. Thus the B-N bonds in Ttz ligands are acid stable. (Ttz(R,Me))ZnCB complexes were characterized by (1)H, (13)C-NMR, IR, MS, elemental analysis, and, in most cases, single crystal X-ray diffraction. The four coordinate crystal structures included (Ttz(R,Me))Zn(CB) [where R = Ph, CB (conjugate base) = OCH(2)CF(3) (2), OPh (6), SPh (8), p-OC(6)H(4)(NO(2)) (10); R = tBu, CB = OCH(CF(3))(2) (3), OPh (5), SPh (7)*, p-OC(6)H(4)(NO(2)) (9) (* indicates a rearranged Ttz ligand)]. The use of bidentate ligands resulted in structures [(Ttz(Ph,Me))Zn(CB) (CB = acac (12), OAc (14))] in which the coordination geometries are five, and intermediate between four and five, respectively. Interestingly, three forms of (Ttz(Ph,Me))Zn(p-OC(6)H(4)(NO(2))) (10) were analyzed crystallographically including a Zn coordinated water molecule in 10(H(2)O), a coordination polymer in 10(CP), and a p-nitrophenol molecule hydrogen bonded to a triazole ring in 10(Nit). Ttz ligands are flexible since they are capable of providing κ(3) or κ(2) metal binding and intermolecular interactions with either a metal center or H through the four position nitrogen (e.g. in 10(CP) and HTtz(tBu,Me)·H(2)O, respectively). Preliminary kinetic studies on the protonolysis of LZnEt (L = Ttz(tBu,Me), Tp(tBu,Me)) with p-nitrophenol in toluene at 95 °C show that these reactions are zero order in acid and first order in the LZnEt.  相似文献   

9.
Summary [MoO2(acac)2] reacts with two equivalents of arylhydrazines in MeOH or MeCN to give mononuclear bis(aryldiazenido) molybdenum complexes of the type [Mo-(NNC6H4R-p)2(acac)2], where R = H (1); Me (2); MeO (3); F (4) or NO2 (5). These complexes have been characterized by i.r., 1H-n.m.r. and u.v.-vis. spectroscopy. The crystal structures of (2) and (3) have been determined. Both lattices are made of discrete mononuclear species containing the cis-[Mo(NNAr)2]2+ unit with singly bent aryldiazenido ligands.  相似文献   

10.
11.
R2Bi-BiR2 [1; R = 2,6-(Me2NCH2)2C6H3], a dibismuthane that exists in different forms in the crystalline state, reacts in air with the formation of the peroxide [R(2)Bi]2(O2) (2) and partial oxidation of the pendant (dimethylamino)methyl groups, yielding the mononuclear bismuth complex R'R' 'Bi (3) [R' = 2-(Me2NCH2)-6-{Me2N(O)CH2}C6H3; R' ' = 2-(Me2NCH2)-6-{O(O)C}C6H3].  相似文献   

12.
The synthesis and characterization of two Group VI pentacarbonyl complexes (pfepp)M(CO)5 (M = Cr 1, Mo 2; pfepp = PPh2C2F5) are reported. Thermolysis of M(CO)6 and pfepp in refluxing octane afforded 1 and 2 in moderate yields. These complexes were completely characterized by multinuclear NMR, IR and elemental analysis. X-ray structures for these complexes indicated they were isostructural, crystalizing in triclinic unit cells with four molecules per asymmetric unit. A comparison of the bond lengths in 1 and 2 to other (L)M(CO)5 complexes showed a relationship between the M-Cax bond length and the electronic influence of the phosphine ligand, and establishes the pfepp ligand as neither electron-rich nor electron-poor. A comparison of IR data with other (L)M(CO)5 complexes also indicates the pfepp ligand is electronically neutral, with an electronic influence that approximates phosphites.  相似文献   

13.
14.
Rhodium and iridium complexes bearing a tridentate [PEP] type ligand ([PEP] = {o-(Ph(2)P)C(6)H(4)}(2)E(Me); E = Ge or Sn) were synthesized through the phosphine exchange reaction accompanied by selective E-C bond cleavage. The ligand precursors {o-(Ph(2)P)C(6)H(4)}(2)EMe(2) (E = Ge or Sn) were readily obtained in excellent yields by treating {o-(Ph(2)P)C(6)H(4)}(2)Li with 0.5 equivalents of Me(2)ECl(2). Tris(triphenylphosphine)rhodium(i) carbonyl hydride M(H)(CO)(PPh(3))(3) (M = Rh, Ir) cleaved one of the E-Me bonds of {o-(Ph(2)P)C(6)H(4)}(2)EMe(2) exclusively to afford the trigonal bipyramidal (TBP) complexes, [PEP]M(CO)(PPh(3)). Square-planar rhodium complexes [PEP]Rh(PPh(3)) were also prepared from the reactions of tetrakis(triphenylphosphine)rhodium(i) hydride Rh(H)(PPh(3))(4) with {o-(Ph(2)P)C(6)H(4)}(2)EMe(2). Further, the trans influence of group 14 elements E (E = Si, Ge, Sn) in [PEP]Rh(PPh(3)) is discussed in terms of the (1)J(Rh-P) coupling constants, indicating that E exhibited a stronger trans labilizing effect in the order Sn < Ge < Si.  相似文献   

15.
The synthesis and characterization of 10-(o-alkoxyphenyl)phenoxarsines 2-ROC6H4As(C6H4)2O (R = H, Me, and Pri, As(C6H4)2O = phenoxarsine) and their platinum(II) and palladium(II) complexes cis-[PtCl2{2-PriOC6H4As(C6H4)2O-kappaAs}2] (1), trans-[PdCl2{2-PriOC6H4As(C6H4)2O-kappaAs}2] (2), cis-[PtCl2{2-HOC6H4As(C6H4)2O-kappaAs}2] (3), cis-[PdCl2{2-HOC6H4As(C6H4)2O-kappaAs}2] (4), cis-[PtI2{2-MeOC6H4As(C6H4)2O-kappaAs}2] (5), and trans-[PdCl2{2-MeOC6H4As(C6H4)2O-kappaAs}2] (6) are reported. The chelate complex cis-[Pt{2-OC6H4As(C6H4)2O-kappaAs,O}2] (7) is also described. The molecular structures of 1-4 and 7 were determined. The short As...O intramolecular interaction found in complexes 1-4 in the solid state was also verified by calculations at the B3LYP/LANL2DZ level for complex 2 and for 10-(o-isopropoxyphenyl)phenoxarsine in the gas phase, and this suggests that the interaction is a characteristic of the ligand rather than a packing effect. Calculations at the B3LYP/LANL2DZ and Oniom(B3LYP/LANL2DZ:uff) levels for complexes 1-4 showed that the solvent plays a crucial role in the crystallization (through geometry constraints) of the kinetically stable cis isomers.  相似文献   

16.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Acidic solutions of InCl3 plus InBr3 contain mixed halide complexes and solvent extraction yields the four-coordinate anions InCl(n)Br(4 - n)-, whose v(In-Cl) and v(In-Br) modes are reported. Two solid products of InCl3 with 15-crown-5 have been identified; crystallisation from aqueous HCI gave a molecular adduct containing InCl3(H2O)2, whereas the ionic complex [InCl2(15-crown-5)][InCl4] was produced under anhydrous conditions. The vibrational spectra are assigned.  相似文献   

18.
The reactivity of a series of iridium? pyridylidene complexes with the formula [TpMe2Ir(C6H5)2(C(CH)3C(R)N H] ( 1 a – 1 c ) towards a variety of substrates, from small molecules, such as H2, O2, carbon oxides, and formaldehyde, to alkenes and alkynes, is described. Most of the observed reactivity is best explained by invoking 16 e? unsaturated [TpMe2Ir(phenyl)(pyridyl)] intermediates, which behave as internal frustrated Lewis pairs (FLPs). H2 is heterolytically split to give hydride? pyridylidene complexes, whilst CO, CO2, and H2C?O provide carbonyl, carbonate, and alkoxide species, respectively. Ethylene and propene form five‐membered metallacycles with an IrCH2CH(R)N (R=H, Me) motif, whereas, in contrast, acetylene affords four‐membered iridacycles with the IrC(?CH2)N moiety. C6H5(C?O)H and C6H5C?CH react with formation of Ir? C6H5 and Ir? C?CPh bonds and the concomitant elimination of a molecule of pyridine and benzene, respectively. Finally the reactivity of compounds 1 a – 1 c against O2 is described. Density functional theory calculations that provide theoretical support for these experimental observations are also reported.  相似文献   

19.
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles.  相似文献   

20.
The monocarbon carborane [Cs][nido-7-CB(10)H(13)] reacts with the 16-electron [RuCl(2)(PPh(3))(3)] in a solution of benzene/methanol in the presence of N,N,N',N'-tetramethylnaphthalene-1,8-diamine as the base to give a series of 12-vertex monocarbon arene-biruthenacarborane complexes of two types: [closo-2-[7,11-exo-RuClPPh(3)(mu,eta(6)-C(6)H(5)PPh(2))]-7,11-(mu-H)(2)-2,1-RuCB(10)H(8)R] (5, R = H; 6, R = 6-MeO; 7, R = 3-MeO) and [closo-2-(eta(6)-C(6)H(6))-10,11,12-[exo-RuCl(PPh(3))(2)]-10,11,12-(mu-H)(3)-2,1-RuCB(10)H(7)R(1)] (8a, R(1) = 6-MeO; 8b, R(1) = 3-MeO, inseparable mixture of isomers) along with trace amounts of 10-vertex mononuclear hypercloso/isocloso-type complexes [2,2-(PPh(3))(2)-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(7)] (9) and [2,5-(Ph(3)P)-2-Cl-2-H-3,9-(MeO)(2)-2,1-RuCB(8)H(6)] (10). Binuclear ruthenacarborane clusters of both series were characterized by a combination of analytical and multinuclear NMR spectroscopic data and by single-crystal X-ray diffraction studies of three selected complexes, 6-8. In solution, isomers 8a,b have been shown to undergo the isomerization process through the scrambling of the exo-[RuCl(PPh(3))(2)] fragment about two adjacent triangular cage boron faces B(7)B(11)B(12) and B(8)B(9)B(12).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号