首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-R-quinolinyl-8-amino ligands HL(1-3) (R = 2,6-(i)Pr(2)C(6)H(3) (HL(1)), 2,6-Et(2)C(6)H(3) (HL(2)), 2,6-Me(2)C(6)H(3) (HL(3))) have been prepared, which reacted readily with one equiv. of rare earth metal tris(alkyl)s to afford the corresponding bis(alkyl) complexes L(1)Y(CH(2)SiMe(3))(2)(THF) (1) and L(1-3)Lu(CH(2)SiMe(3))(2)(THF) (2-4) via alkane elimination. Contrastingly, treatment of the in situ generated neodymium tri(alkyl)s with HL(1) afforded a mono(alkyl) neodymium complex (5). Complexes 1, 2 and 5 in combination with aluminium alkyls and organoborates established homogenous ternary systems that exhibited versatile catalytic activities and trans-1,4 selectivities for the polymerization of butadiene, depending on the types of aluminium alkyl, organoborate and rare earth metal used. Furthermore, the trans-1,4 selective copolymerization of butadiene and isoprene was achieved by using the ternary system of 1/AlMe(3)/[Ph(3)C][B(C(6)F(5))(4)]. Both the kinetics of copolymerization and the thermal behavior of the copolymers were investigated.  相似文献   

2.
Zhou L  Wang J  Zhang Y  Yao Y  Shen Q 《Inorganic chemistry》2007,46(14):5763-5772
The synthesis and structures of a series of lanthanide(II) and lanthanide(III) complexes supported by the amido ligand N(SiMe3)Ar were described. Several lanthanide(III) amide chlorides were synthesized by a metathesis reaction of LnCl3 with lithium amide, including {[(C6H5)(Me3Si)N]2YbCl(THF)}2.PhCH3 (1), [(C6H3-iPr2-2,6)(SiMe3)N]2YbCl(mu-Cl)Li(THF)3.PhCH3 (4), [(C6H3-iPr2-2,6)(SiMe3)N]YbCl2(THF)3 (6), and [(C6H3-iPr2-2,6)(SiMe3)N]2SmCl3Li2(THF)4 (7). The reduction reaction of 1 with Na-K alloy afforded bisamide ytterbium(II) complex [(C6H5)(Me3Si)N]2Yb(DME)2 (2). The same reaction for Sm gave an insoluble black powder. An analogous samarium(II) complex [(C6H5)(Me3Si)N]2Sm(DME)2 (3) was prepared by the metathesis reaction of SmI2 with NaN(C6H5)(SiMe3). The reduction reaction of ytterbium chloride 4 with Na-K alloy afforded monoamide chloride {[(C6H3-iPr2-2,6)(SiMe3)N]Yb(mu-Cl)(THF)2}2 (5), which is the first example of ytterbium(II) amide chloride, formed via the cleavage of the Yb-N bond. The same reduction reaction of 7 gave a normal bisamide complex [(C6H3-iPr2-2,6)(SiMe3)N]2Sm(THF)2 (8) via Sm-Cl bond cleavage. This is the first example for the steric effect on the outcome of the reduction reaction in lanthanide(II) chemistry. 5 can also be synthesized by the Na/K alloy reduction reaction of 6. All of the complexes were fully characterized including X-ray diffraction for 1-7.  相似文献   

3.
Hao J  Li J  Cui C  Roesky HW 《Inorganic chemistry》2011,50(16):7453-7459
Reaction of the aluminum hydroxide LAl(OH)[C(Ph)CH(Ph)] (1, L = HC[(CMe)(NAr)](2), Ar = 2,6-iPr(2)C(6)H(3)) with Y(CH(2)SiMe(3))(3)(THF)(2) yielded the oxo-bridged heterobimetallic yttrium dialkyl complex LAl[C(Ph)CH(Ph)](μ-O)Y(CH(2)SiMe(3))(2)(THF)(2) (2). Alkane elimination reaction of 2 with 2-(imino)pyrrole [NN]H ([NN]H = 2-(ArN═CH)-5-tBuC(4)H(2)NH) afforded the yttrium monoalkyl complex LAl[C(Ph)CH(Ph)] (μ-O)Y(CH(2)SiMe(3))[NN](THF)(2) (5). Alternatively, 5 can be prepared in high yield by reaction of 1 with [NN]Y(CH(2)SiMe(3))(2)(THF)(2) (3). The analogous samarium alkyl complex LAl[C(Ph)CH(Ph)](μ-O)Sm(CH(2)SiMe(3))[NN](THF)(2) (6) was prepared similarly. Reactions of 5 and 6 with 1 equiv of iPrOH yielded the corresponding alkoxyl complexes 7 and 8, respectively. The molecular structures of 3, 6, and 8 have been determined by X-ray single-crystal analysis. Complexes 2, 3, 5, 7, and 8 have been investigated as lactide polymerization initiators. The heterobimetallic alkoxyl 8 is highly active to yield high molecular weight (M(n) = 6.91 × 10(4)) polylactides with over 91% conversion at the lactide-to-initiator molar ratio of 2000.  相似文献   

4.
2,6-diisopropyl-N-(2-thienylmethyl)aniline (H2L) has been prepared, which reacted with equimolar rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, afforded rare earth metal mono(alkyl) complexes, LLn(CH2SiMe3)(THF)3 (:Ln=Lu; :Ln=Y). In this process, H2L was deprotonated by one metal alkyl species followed by intramolecular C-H activation of the thiophene ring to generate dianionic species L2- with the release of two tetramethylsilane. The resulting L2- combined with three THF molecules and an alkyl unit coordinates to Y3+ and Lu3+ ions, respectively, in a rare N,C-bidentate mode, to generate distorted octahedron geometry ligand core. Whereas, with treatment of H2L with equimolar Sc(CH2SiMe3)3(THF)2, a heteroleptic complex (HL)(L)Sc(THF) () was isolated as the main product, where the dianionic L2- species bonds to Sc3+ via chelating N,C atoms whilst the monoanionic HL connects to Sc3+ in an S,N-bidentate mode. All complexes have been characterized by NMR spectroscopy and X-ray diffraction analysis.  相似文献   

5.
Wu Y  Wang S  Zhu X  Yang G  Wei Y  Zhang L  Song HB 《Inorganic chemistry》2008,47(12):5503-5511
A series of four coordinate rare earth metal amides with general formula ((CH2SiMe2)[(2,6- IPr2C6H3)N]2)LnN(SiMe3)2(THF) [(Ln = Yb(2), Y (3), Dy (4), Sm (5), Nd (6)] containing a diamido ligand (CH2SiMe2)[(2,6-iPr2C6H3)N]2(2-) with a CH2SiMe2 link were synthesized in good yields via reaction of [(Me3Si)2N]3Ln(III)(mu-Cl)Li(THF)3 with the corresponding diamine (CH2SiMe2)[(2,6-iPr2C6H3)NH]2 (1). All compounds were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 2, 3, 4, 5, and 6 were determined by single-crystal X-ray analyses. Investigation of the catalytic properties of the complexes indicated that all complexes exhibited a high catalytic activity on the cyclotrimerization of aromatic isocyanates, which represents the first example of cyclopentadienyl-free rare earth metal complexes exhibiting a high catalytic activity and a high selectivity on cyclotrimerization of aromatic isocyanates. The temperatures, solvents, catalyst loading, and the rare earth metal effects on the catalytic activities of the complexes were examined.  相似文献   

6.
Several iron(III) complexes incorporating diamidoether ligands are described. The reaction between [Li(2)[RN(SiMe(2))](2)O] and FeX(3) (X=Cl or Br; R=2,4,6-Me(3)Ph or 2,6-iPr(2)Ph) form unusual ate complexes, [FeX(2)Li[RN(SiMe(2))](2)O](2) (2, X=Cl, R=2,4,6-Me(3)Ph; 3, X=Br, R=2,4,6-Me(3)Ph; 4, X=Cl, R=2,6-iPr(2)Ph) which are stabilized by Li-pi interactions. These dimeric iron(III)-diamido complexes exhibit magnetic behaviour characteristic of uncoupled high spin (S= 5/2 ) iron(III) centres. They also undergo halide metathesis resulting in reduced iron(II) species. Thus, reaction of 2 with alkyllithium reagents leads to the formation of iron(II) dimer [Fe[Me(3)PhN(SiMe(2))](2)O](2) (6). Similarly, the previously reported iron(III)-diamido complex [FeCl[tBuN(SiMe(2))](2)O](2) (1) reacts with LiPPh(2) to yield the iron(II) dimer [Fe[tBuN(SiMe(2))](2)O](2) but reaction with LiNPh(2) gives the iron(II) product [Fe(2)(NPh(2))(2)[tBuN(SiMe(2))](2)O] (5). Some redox chemistry is also observed as side reactions in the syntheses of 2-4, yielding THF adducts of FeX(2): the one-dimensional chain [FeBr(2)(THF)(2)](n) (7) and the cluster [Fe(4)Cl(8)(THF)(6)]. The X-ray crystal structures of 3, 5 and 7 are described.  相似文献   

7.
Anilido phosphinimino ancillary ligand H(2)L(1) reacted with one equivalent of rare earth metal trialkyl [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] (Ln=Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH(3))(3)(THF)] (1 a: Ln=Y; 1 b: Ln=Lu). In this process, deprotonation of H(2)L(1) by one metal alkyl species was followed by intramolecular C--H activation of the phenyl group of the phosphine moiety to generate dianionic species L(1) with release of two equivalnts of tetramethylsilane. Ligand L(1) coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex l a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL(1))LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C--H activation of the phenyl group is reversible. When 1 a was exposed to moisture, the hydrolyzed dimeric complex [{(HL(1))Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH(2)Si(CH(3))(3)}(3)(thf)(2)] with amino phosphine ligands HL(2-R) gave stable rare earth metal bis-alkyl complexes [(L(2-R))Ln{CH(2)Si(CH(3))(3)}(2)(thf)] (4 a: Ln=Y, R=Me; 4 b: Ln=Lu, R=Me; 4 c: Ln=Y, R=iPr; 4 d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4 a and 4 c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L(2-R))Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5 a: R=Me; 5 b: R=iPr). Complexes 1 a,b and 4 a-d initiated the ring-opening polymerization of d,l-lactide with high activity to give atactic polylactides.  相似文献   

8.
The isospecific 3,4-polymerization of isoprene has been achieved for the first time by use of a combination of a binuclear rare earth metal dialkyl complex, such as [Me2Si(C5Me4)(mu-PCy)YCH2SiMe3]2 (Cy = cyclohexyl), and an equimolar amount of [Ph3C][B(C6F5)4] as a catalyst system. A DFT calculation suggested that a binuclear monocationic monoalkyl species, such as [Me2Si(C5Me4)(mu-PCy)Y(mu-CH2SiMe3)Y(mu-PCy)(C5Me4)SiMe2]+, in which the alkyl group bridges the two metal centers, could be the true catalyst species.  相似文献   

9.
Reaction of aminosilanetriol RSi(OH)(3) (1) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) with diethyl zinc at room temperature in 1:1 stoichiometric ratio affords [(THF)Zn(O(2)(OH)SiR)](4) (2) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) in good yield. The single-crystal X-ray diffraction studies reveal that 2 is monoclinic, P2(1), with a = 17.117(3) A, b = 16.692(5) A, c = 17.399(4) A, alpha = gamma = 90 degrees, beta = 91.45(7) degrees, and Z = 2. The molecular structure of 2 contains two puckered eight-membered Zn(2)Si(2)O(4) rings, which are connected by the Zn-O bonds and form two planar four-membered Zn(2)O(2) rings. Compound 2 contains an unreacted hydroxyl group on each silicon atom, and hence, we carried out the reactions of 2 with dimethylzinc and methyllithium to form [Zn(4)(THF)(4)(MeZn)(4)(O(3)SiR)(4)] (3) (R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))) and [(L)ZnLi(O(3)SiR)](4) (4) (L = 1,4-(Me(2)N)(2)C(6)H(4), R = (2,6-i-Pr(2)C(6)H(3))N(SiMe(3))), respectively. This suggested that 2 could be an intermediate product formed during the synthesis of 3 and 4.  相似文献   

10.
The coordination chemistry of the N-substituted arylamido ligands [N(R)(C6H3R'2-2,6)] [R = SiMe3, R' = Me (L1); R = CH2But, R' = Pri (L2)] toward FeII and CoII ions was studied. The monoamido complexes [M(L1)(Cl)(tmeda)] [M = Fe (1), Co (2)] react readily with MeLi, affording the mononuclear, paramagnetic iron(II) and cobalt(II) methyl-arylamido complexes [M(L1)(Me)(tmeda)] [M = Fe (3), Co (4)]. Treatment of 2:1 [Li(L2)(THF)2]/FeCl2 affords the unusual two-coordinate iron(II) bis(arylamide) [Fe(L2)2] (5).  相似文献   

11.
以N-(2-异丙酸)-邻羟基苯甲酰腙(C10H10N2O4, H3L)、2,6-吡啶二甲酸(2,6-H2PDA)与RE(NO3)3•nH2O (RE=Pr, Eu)在室温下反应, 合成了配合物1 [Pr2(H2L)2(HL)2(2,6-H2PDA)(H2O)2]•2H2O和配合物2 [Eu2(H2L)2(HL)2(2,6-H2PDA)- (H2O)2]•2H2O, 对其进行了元素分析、红外光谱、紫外光谱等表征, 测定了两种配合物的晶体结构. 通过紫外吸收光谱、荧光发射光谱和稳态荧光猝灭方法及其与溴化乙锭(EB)的竞争实验研究了两种配合物与小牛胸腺DNA的作用情况. 结果表明, 两种配合物与小牛胸腺DNA均是以插入方式结合的.  相似文献   

12.
Lutetium alkyl complexes [Lu(L)(CH(2)SiMe(3))(THF)(n)], which contain a sulfur-linked bis(phenolato) ligand such as 2,2'-thiobis(6-tert-butyl-4-methylphenolate) (L=tbmp, 1) or 1,4-dithiabutanediyl-bis(6-tert-butyl-4-methylphenolate) (L=etbmp, 2), were isolated from the reaction of the lutetium tris(alkyl) complex [Lu(CH(2)SiMe(3))(3)(THF)(2)] with H(2)L. The monomeric structures of these complexes were confirmed by X-ray diffraction studies, showing distorted octahedral geometry around the metal centre. The reaction of [Lu(tbmp)(CH(2)SiMe(3))(THF)(2)] (1) with alcohols ROH (R=iPr, CHPh(2), CPh(3)) results in the formation of the corresponding alkoxide complexes [Lu(tbmp)(OR)(THF)(n)] (4-6). With PhSiH(3) hydride complexes [Lu(L)(mu-H)(THF)(n)](2) (L=tbmp, 7; etbmp, 8) have been prepared in moderate to good yields. They adopt a dimeric form in the solid state as revealed by the X-ray crystal structure of 7. The reactivity of the hydride complexes and their catalytic activity in the ring-opening polymerisation of L-lactide and the hydrosilylation of alkenes are also discussed.  相似文献   

13.
Reaction of yttrium and lanthanide trichlorides (Ln = La, Eu, Yb) with 1 equiv of the trisodium salt of 1,4,7-tris(dimethylsilylaniline)-1,4,7-triazacyclononane (Na(3)[(SiMe(2)NPh)(3)-tacn](THF)(2)) gives good yields of the compounds [M[(SiMe(2)NPh)(3)-tacn]] (M = Y (1), Eu (3), Yb (4)) and [La[(SiMe(2)NPh)(3)-tacn](THF)] (2). Reduction of 3 with Na/Hg followed by recrystallization in the presence of diglyme yielded crystals of [Eu[(SiMe(2)NPh)(3)-tacn]][Na(diglyme)(2)] (5). Synthesis of the uranium(III) complex [U[(SiMe(2)NPh)(3)-tacn]] (6) is achieved by reaction of 1 equiv of Na(3)[(SiMe(2)NPh)(3)-tacn](THF)(2) with uranium triiodide. The U(IV) complexes, [U[(SiMe(2)NPh)(3)-tacn]X] (X = Cl (7); I (8)), were prepared via oxidation of 6 with benzyl chloride or I(2), but salt metathesis from UCl(4) provided a higher yield route for 7. The solid-state structures of 1-7 were determined by single-crystal X-ray diffraction. The ligand [(SiMe(2)NPh)(3)-tacn] generates a trigonal prismatic coordination environment for the metal center in the neutral complexes 1, 3, 4, and 6 and the ionic 5. In 2 the six nitrogen atoms of the ligand are in a trigonal prismatic configuration with the oxygen atom of the THF capping one of the triangular faces of the trigonal prism. In 7 the coordination geometry around the uranium atom is best described as bicapped trigonal bipyramidal.  相似文献   

14.
Reaction of the phenoxytriamine proligands 2,4-dimethyl-6-bis(2-(diethylamino)ethyl)aminomethlyphenol (HL1) and 2,4-di-tert-butyl-6-bis(2-(diethylamino)ethyl)aminomethylphenol (HL2) with Y[N(SiMe2H)2]3(THF)2 in pentane gave the momomeric complexes L1Y[N(SiMe2H)2]2 (1) and L2Y[N(SiMe2H)2]2 (2). X-Ray structural analysis of 2 shows a 5-coordinate yttrium center. The complexes 1 and 2 catalyze the ring opening polymerization of d-l-lactide and epsilon-caprolactone leading to narrow product polydispersities under mild conditions.  相似文献   

15.
Deacon GB  Forsyth CM  Junk PC  Wang J 《Inorganic chemistry》2007,46(23):10022-10030
The reaction of [Sm{N(SiMe3)2}2(THF)2] (THF=tetrahydrofuran) with carbodiimides RN=C=NR (R=Cy, C6H3-2,6-iPr2) led to the formation of dinuclear SmIII complexes via differing C-C coupling processes. For R=Cy, the product [{(Me3Si)2N}2Sm(micro-C2N4Cy4)Sm{N(SiMe3)2}2] (1) has an oxalamidinate [C2N4Cy4]2- ligand resulting from coupling at the central C atoms of two CyNCNCy moieties. In contrast, for R=C6H3-2,6-iPr2, H transfer and an unusual coupling of two iPr methine C atoms resulted in a linked formamidinate complex, [{(Me3Si)2N}2Sm{micro-(RNC(H)N(Ar-Ar)NC(H)NR)}Sm{N(SiMe3)2}2] (2) (Ar-Ar=C6H3-2-iPr-6-C(CH3)2C(CH3)2-6'-C6H3-2'-iPr). Analogous reactions of RN=C=NR (R=Cy, C6H3-2,6-iPr2) with the SmII "ate" complex [Sm{N(SiMe2)3Na] gave 1 for R=Cy, but a novel C-substituted amidinate complex, [(THF)Na{N(R)C(NR)CH2Si(Me2)N(SiMe3)}Sm{N(SiMe3)2}2] (3), for R=C6H3-2,6-iPr2, via gamma C-H activation of a N(SiMe3)2 ligand.  相似文献   

16.
Novel yttrium chelating diamide complexes [(Y[ArN(CH(2))(x)NAr](Z)(THF)(n))(y)] (Z = I, CH(SiMe(3))(2), CH(2)Ph, H, N(SiMe(3))(2), OC(6)H(3)-2,6-(t)Bu(2)-4-Me; x = 2, 3; n = 1 or 2; y = 1 or 2) were made via salt metathesis of the potassium diamides (x = 3 (3), x = 2 (4)) and yttrium triiodide in THF (5,10), followed by salt metathesis with the appropriate potassium salt (6-9, 11-13, 15) and further reaction with molecular hydrogen (14). 6 and 11(Z = CH(SiMe(3))(2), x = 2, 3) underwent unprecedented exchange of yttrium for silicon on reaction with phenylsilane to yield (Si[ArN(CH(2))(x)NAr]PhH) (x = 2 (16), 3) and (Si[CH(SiMe(3))(2)]PhH(2)).  相似文献   

17.
The mono(amidinate) iron(ii) ferrate complex [{PhC(NAr)(2)}FeCl(micro-Cl)Li(THF)(3)] (1, Ar = 2,6-iPr(2)C(6)H(3)) was prepared and was found to undergo ligand redistribution in non-coordinating solvents to give the homoleptic [{PhC(NAr)(2)}(2)Fe] (2) as the only isolable product. Reaction of with alkylating agents also induces this redistribution, but the presence of pyridine allows isolation of the four-coordinate 14 VE monoalkyl complex [{PhC(NAr)(2)}FeCH(2)SiMe(3)(py)] (4). Generation of the 12 VE alkyl via pyridine abstraction from 4 by B(C(6)F(5))(3) again induced ligand redistribution. Attempts to trap a 12 VE alkyl species with CO led to the isolation of a dimeric Fe(0)-Li-ferrate complex (3) with a carbamoyl ligand, derived from CO insertion into the iron-amidinate bond.  相似文献   

18.
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2)(2-Ti) was prepared by treatment of Ti(OPr(i)(4)) with the new amino-bis(phenol) Me(2)NCH(2)CH(2)N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)OH-2](2)(2-H(2)). The reduction of 2-Ti with sodium amalgam gave the titanium(III) salt Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)]](OPr(i))(2).Na(THF)(2)(8). A comparison of the X-ray structures of 2-Ti and 8 showed that the additional electron in 8 significantly reduced the intensity of the pi-bonding from the oxygen atoms of the isopropoxide groups to titanium. 1-Ca and 8 were active initiators for the ring-opening polymerisation of epsilon-caprolactone (up to 97% conversion of 200 equivalents in 2 hours) and yielded polymers with narrow molecular weight distributions.  相似文献   

19.
The acid-base reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] with Cp'H gave the corresponding half-sandwich rare earth dialkyl complexes [(Cp')Ln(CH(2)SiMe(3))(2)(thf)] (1-Ln: Ln=Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; Cp'=C(5)Me(4)SiMe(3)) in 62-90% isolated yields. X-ray crystallographic studies revealed that all of these complexes adopt a similar overall structure, in spite of large difference in metal-ion size. In most cases, the hydrogenolysis of the dialkyl complexes in toluene gave the tetranuclear octahydride complexes [{(Cp')Ln(μ-H)(2)}(4)(thf)(x)] (2-Ln: Ln=Sc, x=0; Y, x=1; Er, x=1; Tm, x=1; Gd, x=1; Dy, x=1; Ho, x=1) as the only isolable product. However, in the case of Lu, a trinuclear pentahydride [(Cp')(2)Lu(3)(μ-H)(5)(μ-CH(2)SiMe(2)C(5)Me(4))(thf)(2)] (3), in which the C-H activation of a methyl group of the Me(3)Si unit on a Cp' ligand took place, was obtained as a major product (66% yield), in addition to the tetranuclear octahydride [{(Cp')Lu(μ-H)(2)}(4)(thf)] (2-Lu, 34%). The use of hexane instead of toluene as a solvent for the hydrogenolysis of 1-Lu led to formation of 2-Lu as a major product (85%), while a similar reaction in THF yielded 3 predominantly (90%). The tetranuclear octahydride complexes of early (larger) lanthanide metals [{Cp'Ln(μ-H)(2)}(4)(thf)(2)] (2, Ln=La, Ce, Pr, Nd, Sm) were obtained in 38-57% isolated yields by hydrogenolysis of the bis(aminobenzyl) species [Cp'Ln(CH(2)C(6)H(4)NMe(2)-o)(2)], which were generated in-situ by reaction of [Ln(CH(2)C(6)H(4)NMe(2)-o)(3)] with one equivalent of Cp'H. X-ray crystallographic studies showed that the fine structures of these hydride clusters are dependent on the size of the metal ions.  相似文献   

20.
Wan L  Zhang C  Xing Y  Li Z  Xing N  Wan L  Shan H 《Inorganic chemistry》2012,51(12):6517-6528
A series of novel bis-pyrazole/pyridine complexes, [Zn(2)(HL(1))(2)(μ(2)-SO(4))](2)·EtOH·H(2)O (1), [Co(2)(HL(1))(2)(μ(2)-SO(4))](2)·2DMF·6H(2)O (2), [Zn(4)(HL(1))(4)(μ(4)-SO(4))][OH](2) (3), [Zn(2)(HL(2))(2)(μ(2)-SO(4))]·2H(2)O (4), [Zn(H(2)L(2))(H(2)O)(2)](SO(4))·0.87H(2)O (5) (H(2)L(1) = 2,6-di-(5-phenyl-1H-pyrazol-3-yl)pyridine, H(2)L(2) = 2,6-di-(5-methyl-1H-pyrazol-3-yl)pyridine), were synthesized hydrothermally from the self-assembly of Zn(II) or Co(II) with different types of bipyrazolyl/pyridine derivative ligands. All the complexes were characterized by elemental analysis, IR and UV-vis spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction. Structural analyses revealed that metal atoms (Zn and Co) in complexes 1-5 are five-coordination modes, forming slightly distorted trigonal bipyramidal geometries. In complexes 1-3, H(2)L(1) ligand connected the two metal centers via the tetradentate fashion, and the same form of connection was found in complex 4 with H(2)L(2) ligand. While in complex 5, H(2)L(2) only connected with one metal center via the tridentate fashion, which was different from those in complexes 1-4. Additionally, there are abundant hydrogen bonding interactions in complexes 1-4. Interestingly, for hydrogen bonding connecting fashions being different, the molecules for the complexes 1 and 4 are held together by the hydrogen bond to form a 1D supramolecular structure, whereas complexes 2 and 3 are a hydrogen bonded dimer. In addition, quantum chemical calculations for 1, 3, and 4, thermal behaviors and photoluminescent properties for 1 and 3-5 were performed and discussed in detail. In the mean time, we found that these complexes had potential catalytic activity for the oxidation reaction of cyclohexane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号