首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Precursor silica nanoparticles can evolve to silicalite-1 crystals under hydrothermal conditions in the presence of tetrapropylammonium (TPA) cations. It has been proposed that in relatively dilute sols of silica, TPA, water, and ethanol, silicalite-1 growth is preceded by precursor nanoparticle evolution and then occurs by oriented aggregation. Here, we present a study of silicalite-1 crystallization in more concentrated mixtures and propose that growth follows a path similar to that taken in the dilute system. Small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and high-resolution transmission electron microscopy (HRTEM) were used to measure nanoparticle size and to monitor zeolite nucleation and early-stage crystal development. The precursor silica nanoparticles, present in the clear sols prior to crystal formation, were characterized using two SAXS instruments, and the influence of interparticle interactions is discussed. In addition, SAXS was used to detect the onset of secondary particle formation, and HRTEM was used to characterize their structure and morphology. Cryo-TEM allowed for in situ visual observation of the nanoparticle population. Combined results are consistent with growth by aggregation of silica nanoparticles and of the larger secondary crystallites. Finally, a unique intergrowth structure that was formed during the more advanced growth stages is reported, lending additional support for the proposal of aggregative growth.  相似文献   

2.
The formation of zeolite A (LTA) in the presence of tetramethylammonium cations is studied using in situ small angle and wide angle X-ray scattering (SAXS/WAXS) techniques. The SAXS measurements show the formation of homogeneous precursors 10 nm in size prior to the crystallization of LTA which were consumed during the crystallization. The crystal size is estimated by fitting the SAXS patterns with an equation for a cubic particle, and it is revealed that the final crystal size of the LTA depends on the synthesis temperature. However, although such temperature dependence is noted for the final crystal size, the initial precursor particles size appears to be closely similar (ca. 10 nm) irrespective of the synthesis temperature.  相似文献   

3.
Recently, many cosmetic researchers have been focused on multiple emulsions due to better performance. Limited application of multiple emulsions has been attributed to their instability, which can be resolved by the presence of liquid crystals. Multiple emulsions containing liquid crystals are affected by various formulation parameters, such as liquid oils. In this paper, the influence of liquid oils on the formation mechanism was studied. Besides, stability, small-angle x-ray scattering (SAXS) spectra analysis, and rheological analysis of the emulsions were investigated as well. The results showed that when the gap of the polarity between inner oils and external liquid oils is greater, the multiple structures were more easily formed. Multiple emulsions containing liquid crystals were superior in stability to multiple emulsions prepared in the same way with liquid oils that did not form liquid crystals. SAXS indicated that the liquid crystal orientation was lamellar. Rheological analysis indicated that the different structure emulsions showed shear-thinning behavior. The presence of liquid crystal decreased the viscosity and resulted in pseudoplastic enhancement. Both the storage modulus (G′) and the loss modulus (G″) of multiple emulsions were slightly higher than those of O/W-type emulsions, implying the existence of multiple structures.  相似文献   

4.
Summary: The annealing and melting behavior of poly[(R)‐3‐hydroxybutyrate] (P(3HB)) single crystals were followed in real time by synchrotron small‐ (SAXS) and wide‐angle X‐ray scattering (WAXS) measurements. The real‐time SAXS measurements revealed that the P(3HB) single crystal exhibits a discontinuous increase of lamellar thickness during heating. The structural changes as observed by SAXS and WAXS were in response to the thermal properties of single crystals characterized by differential scanning calorimetry.

A series of two‐dimensional small‐angle X‐ray scattering patterns of P(3HB) single crystal mats during the lamellar thickening process.  相似文献   


5.
Self-assembled colloidal crystals from ZrO2 nanoparticles   总被引:1,自引:0,他引:1  
Ordered three-dimensional (3-D) assemblies of nanocrystalline zirconia were synthesized from aqueous suspensions of ZrO(2) nanoparticles without the need for hydrocarbon surfactants or solvents to control colloidal crystal growth. Nanoparticles were suspended in mild acid and subsequently titrated from low to neutral pH. The solubility was reduced as the surfaces were neutralized, promoting assembly of the nanoparticles into ordered monoliths. TEM measurements indicated the formation of three-dimensional, hexagonal faceted, micrometer-sized colloidal crystals composed of 4 nm diameter ZrO(2) nanoparticles. Lacking organic surfactants, the colloidal crystals were exceptionally robust and were sintered at high temperatures (300-500 degrees C) for further stability. Small-angle X-ray scattering (SAXS) measurements demonstrate that the samples become progressively more amorphous above 350 degrees C, although some ordered domains of nanoparticles persist. Additionally, the heat treatment dramatically increases the surface area of the colloidal crystals as water and residual organics are desorbed, revealing highly controlled interstitial spaces and pores.  相似文献   

6.
The spherulite morphology and crystallization behavior of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) blends were investigated with optical microscopy (OM), small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS). The thermal analysis showed that PET and PTT were miscible in the melt over the entire composition range. The rejected distance of non-crystallizable species, which was represented in terms of the parameter δ, played an important role in determining the morphological patterns of the blends at a specific crystallization temperature regime. The parameter δ could be controlled by variation of the composition, the crystallization temperature, and the level of transesterification. In the case of two-step crystallization, the crystallization of PTT commenced in the interspherulitic region between the grown PET crystals and proceeded until the interspherulitic space was filled with PTT crystals. The spherulitic surface of the PET crystals acted as nucleation sites where PTT preferentially crystallized, leading to the formation of non-spherulitic crystalline texture. The SALS results suggested that the growth pattern of the PET crystals was significantly changed by the presence of the PTT molecules. The lamellar morphology parameters were evaluated by a one-dimensional correlation function analysis. The blends that crystallized above the melting point of PTT showed a larger amorphous layer thickness than the pure PET, indicating that the non-crystallizable PTT component might be incorporated into the interlamellar region of the PET crystals. With an increased level of transesterification, the exclusion of non-crystallizable species from the lamellar stacks was favorable due to the lower crystal growth rates. As a result, the amorphous layer thickness of the PET crystals decreased as the annealing time in the melt state was increased.  相似文献   

7.
Small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) as well as small-angle light-scattering (SALS) techniques have been applied to investigate the microstructure of a number of commercial poly(vinyl chloride) (PVC) samples. From the wide-angle x-ray scattering, crystallinity and crystal size parameters have been determined. The crystallinity of the samples investigated range from 5% to 10%. Superstructure parameters such as crystallite thickness, distribution functions of crystallite and amorphous thicknesses, and size of ordered regions have been obtained by an analysis of the SAXS curves using the cluster model. The crystallinity agrees well with the WAXS crystallinities indicating that most of the crystals are lamellar shaped, though some rodlike entities are present in the sample as is shown by the small-angle light scattering. From the SAXS analysis, the microstructure is described as clusters of lamella stacks which are identical with the subprimary particles. Their size is determined to be 220–240 Å. Emulsion type PVC also contains lamellar-shaped crystals. The superstructure, however, of this type of PVC is different from that of mass or suspension-polymerized material. The SAXS curve does not reveal any correlation between the crystals.  相似文献   

8.
Nearly monodisperse silver nanoparticles have been prepared in a simple oleylamine-liquid paraffin system. Intensive study has found that the formation process of silver nanoparticles could be divided into three stages: growth, incubation, and Ostwald ripening stages. Ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), and high-resolution TEM have all demonstrated the occurrence of Ostwald ripening, which could result in better control over the size and size distribution of silver nanoparticles. SAXS (small-angle X-ray scattering) results show that the as-obtained silver nanoparticles can self-assemble into ordered arrays. The possible reduction mechanism of silver ions by oleylamine is related to the Ag+-mediated conversion of primary amines to nitriles.  相似文献   

9.
The early stages of evaporation induced self-assembly of titanium oxide mesophases from a precursor solution containing TiCl4 and the Pluronic triblock copolymer F-127 in HCl-water-ethanol solution have been studied using time-resolved SAXS techniques. Two experimental protocols were used to conduct these experiments. In one of these, the precursor solution was pumped around a closed loop as solvent was allowed to evaporate at a constant humidity-controlled rate. In the second protocol, a film of precursor solution was measured periodically as it dried completely to a residue under a stream of dry air. This permitted the detailed monitoring of changes in solution chemistry as a function of the elimination of volatile components followed by the actual drying process itself. The SAXS data were modeled in terms of two Guinier radii for soft nanoparticles while a broad Gaussian feature in the scatter profiles was accounted for by particle-article scattering interference due to close packing. For the initial precursor solution, one Guinier radius was found to be about 17 angstroms while the other ranged from 4 to 11 angstroms. Changing the rate of evaporation affected the two radii differently with a more pronounced effect on the smaller particle size range. Analysis gave an interparticle distance in the range 55-80 angstroms for the initial precursor solution which decreased steadily at both of the humidities investigated as evaporation proceeded and the particle packing increased. These results represent the first attempts to monitor in a precise fashion the growth of nano building blocks during the initial stages of the self-assembly process of a titanium oxide mesophase.  相似文献   

10.
Small-angle x-ray scattering (SAXS) of isotropic or uniaxially oriented nylon 6 was investigated as a function of thermal and mechanical history. In addition to the peak position and linewidth of the SAXS maximum, the integrated SAXS intensity was measured. It was found that the radial intensity distributions of isotropic or arced patterns are controlled to some extent by the small width of the semicrystalline macrolattice, rendering the conventional long period and line shape analysis inapplicable to these patterns. A two-dimensional analysis is possible with well-oriented fibers; the major structural changes which are seen in fibers after annealing above 190°C are associated with melting and recrystallization. Extensive cold drawing and subsequent annealing cause rather modest (ca. ~30%) changes in the integrated SAXS intensity. These effects are consistent with the generation of homogeneous interfibrillar regions during the latter stages of plastic deformation. On annealing a quenched film on nylon 6, the transformation of the crystals from a pseudohexagonal to a monoclinic habit occurs above 170°C.  相似文献   

11.
In this paper, multiple emulsions containing liquid crystals were prepared successfully and the influence of formulation parameters on the formation mechanism was studied. Moreover, differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) spectra analysis and stability analysis were used to characterise the property of them. The results showed that the chemical structure of water-in-oil (W/O) emulsifiers directly impacted on the formation of multiple structure, but the effect on the formation of liquid crystal structure was negligible. With the gap of the polarity between inner and outer liquid oils decreased, both multiple structure and liquid crystal structure were harder to form. The content of sodium chloride in internal aqueous phase, which should be neither too high nor too low, has great impact on the formulation of multiple structure. It was easier to form two structures simultaneously when the carbon chain length of fatty alcohols was closer to that of emulsifier C22 alkyl polyglucoside (202). DSC elucidated the phase transitions of water in the liquid crystal layer and the W/O emulsions. SAXS indicated that the liquid crystal orientation was lamellar. The stability analysis showed that the presence of liquid crystal structure had a significant contribution to the stability of the multiple emulsions.  相似文献   

12.
Core-shell nanoparticles have been prepared by irradiation of gamma-ray on block copolymer micelles consisting of hydrophilic polyacrylic acid and hydrophobic polyisoprene with each 40 monomer units. The structure was determined by means of dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The size distribution of the core-shell nanoparticles determined by DLS and AFM was very narrow. The average diameter of the particles decreased from 48 nm for the original micelles to 26 nm by the irradiation of 30 kGy. The core size determined by SAXS combined with DLS was roughly constant of 10 nm, irrespective of irradiation dose, whereas the shell thickness of the micelles was twice as large as the core size, and decreased with increasing irradiation dose.  相似文献   

13.
Colloidal silicalite‐1 zeolite was crystallized from a concentrated clear sol prepared from tetraethylorthosilicate (TEOS) and aqueous tetrapropylammonium hydroxide (TPAOH) solution at 95 °C. The silicate speciation was monitored by using dynamic light scattering (DLS), synchrotron small‐angle X‐ray scattering (SAXS), and quantitative liquid‐state 29Si NMR spectroscopy. The silicon atoms were present in dissolved oligomers, two discrete nanoparticle populations approximately 2 and 6 nm in size, and crystals. On the basis of new insight into the evolution of the different nanoparticle populations and of the silicate connectivity in the nanoparticles, a refined crystallization mechanism was derived. Upon combining the reagents, different types of nanoparticles (ca. 2 nm) are formed. A fraction of these nanoparticles with the least condensed silicate structure does not participate in the crystallization process. After completion of the crystallization, they represent the residual silicon atoms. Nanoparticles with a more condensed silicate network grow until approximately 6 nm and evolve into building blocks for nucleation and growth of the silicalite‐1 crystals. The silicate network connectivity of nanoparticles suitable for nucleation and growth increasingly resembles that of the final zeolite. This new insight into the two classes of nanoparticles will be useful to tune the syntheses of silicalite‐1 for maximum yield.  相似文献   

14.
The temporal evolution of Pt nanoparticle formation in ethylene glycol solution from H(2)PtCl(6)·6H(2)O at 90 °C for different molar ratios of NaOH to Pt (84, 6.5, and 2) in the presence or absence of poly(N-vinyl-2-pyrrolidone) (PVP) as protecting agent was followed in situ by small-angle X-ray scattering (SAXS). The SAXS profiles were analyzed regarding particle size and size distribution using the Guinier approximation and the indirect Fourier transform technique (IFT). The NaOH to Pt ratio has an influence on the integral nanoparticle formation rate as well as on the metal reduction rate and the ratio of nucleation to growth reactions. The fastest nanoparticle formation rate was observed for the NaOH/Pt ratio of 6.5. The obtained results indicate that the differences in the particle formation rate might be due to differences in the reduction rate of the formed Pt complexes. In alkaline reaction media (NaOH/Pt = 84 or 6.5), small nanoparticles with a relatively narrow size distribution were formed. Therefore, it is assumed that for these NaOH/Pt ratios the particle formation is dominated by nucleation reactions. Additionally, the in situ studies point out that nanoparticles prepared at the NaOH/Pt ratio of 84 do not grow further after attaining a certain particle size. For a NaOH to Pt ratio of 2, that means in acidic medium, particle formation should be dominated by growing processes and, therefore, larger particles are formed accompanied by a broader particle size distribution. The influence of PVP on the nanoparticle formation rate is relatively low. However, in acidic medium, the presence of PVP is necessary in order to protect the formed nanoparticles from irreversible aggregation reactions.  相似文献   

15.
The morphological development of melt-drawn transparent high-density polyethylene during heating was investigated employing in-situ synchrotron small-angle X-ray scattering (SAXS) technique. The results confirm that at lower temperatures only meridional scattering peaks aligned perpendicular to the extensional flow direction can be observed, indicating a highly oriented lamellar crystallite structure; whereas at higher temperatures an equatorial streak additional to the layer-like meridional scattering pattern develops, reflecting the presence of shish-kebab-like objects in the specimen under investigation. Upon heating, the average thickness of the kebab crystals remains essentially unaffected below 110 °C, and subsequently the selective melting of the less stable kebabs proceeds yielding thicker layered lamellar crystals. When the temperature is raised to 131 °C, the shish-like formation and the thermally stable kebab crystals melt simultaneously. In addition, the microstructure of the melt-drawn specimen subjected to annealing at elevated temperatures was probed at room temperature. As opposed to the SAXS patterns registered at high temperatures, the SAXS diagram measured after annealing shows no equatorial streak, suggesting that the cylindrical structures could be re-formed. This observation can be explained by assuming that the plate-like kebab crystals with their normal parallel to the stretching direction grow and impinge during cooling to room temperature due to secondary crystallization, which can be verified by in-situ SAXS experiments during annealing and subsequent cooling.  相似文献   

16.
Crystals of poly-trans-1,4-butadiene of uniform size have been grown from three solvents (n-heptane, methyl isobutyl ketone, and toluene) by using a minimum dissolution temeprature technique. The percentage of double bonds available for reaction in the crystals was determined by epoxidation in suspension; crystal thicknesses were measured by electron microscopy. These values were used to calculate the number of monomer units per fold. The number of available double bonds was found to increase with decreasing molecular weight, evidence for the presence of non-reentrant chains (cilia) at the crystal surfaces. The nature of the chain fold in poly-trans-1,4-butadiene crystals is discussed.  相似文献   

17.
Structural and morphological behavior under stress–strain of polypropylene/multi‐walled carbon nanotubes (PP/MWCNTs) nanocomposites prepared through ultrasound‐assisted melt extrusion process was studied by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, small angle X‐ray scattering (SAXS), and wide angle X‐ray scattering (WAXS). A high ductile behavior was observed in the PP/MWCNT nanocomposites with low concentration of MWCNTs. This was related to an energy‐dissipating mechanism, achieved by the formation of an ordered PP‐CNTs interphase zone and crystal oriented structure in the undeformed samples. Different strain‐induced‐phase transformations were observed by ex situ SAXS/WAXS, characterizing the different stages of structure development during the deformation of PP and PP/MWCNTs nanocomposites. The high concentration of CNTs reduced the strain behavior of PP due to the agglomeration of nanoparticles. A structural pathway relating the deformation‐induced phase transitions and the dissipation energy mechanism in the PP/MWCNTs nanocomposites at low concentration of nanoparticles was proposed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 475–491  相似文献   

18.
19.
The micro‐segmented flow technique was applied for continuous synthesis of ZnO micro‐ and nanoparticles with short residence times of 9.4 s and 21.4 s, respectively. The obtained particles were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Small angle X‐ray scattering (SAXS) and photoluminescence spectroscopy were used to determine the size and optical properties of ZnO nanoparticles. In addition, extended X‐ray absorption fine structure (EXAFS) spectroscopy was employed to investigate local structural properties. The EXAFS measurements reveal a larger degree of structural disorder in the nanoparticles than the microparticles. These structural changes should be taken into consideration while evaluating the size‐dependent visible emission of ZnO nanoparticles.  相似文献   

20.
The simultaneous homogeneous and heterogeneous precipitation of hydrous Fe(III) oxides was investigated in the presence of environmentally ubiquitous anions (nitrate, chloride, and sulfate). Experiments were conducted with 10(-4) M Fe(III) at acidic pH (pH = 3.7 ± 0.2), which often occurs at acid mine drainage sites or geologic CO(2) storage aquifers near injection wells. Quartz was used as a model substrate for heterogeneous precipitation. Small angle X-ray scattering (SAXS) and grazing incidence SAXS (GISAXS), atomic force microscopy (AFM), and dynamic light scattering (DLS) measurements were conducted. In situ SAXS/GISAXS quantified the size, total particle volume, number, and surface area evolutions of the primary nanoparticles formed in the nitrate and chloride systems. In both systems, the heterogeneously precipitated particles were smaller than the homogeneously precipitated particles. Compared with chloride, the volume of heterogeneously precipitated hydrous Fe(III) oxides on the quartz surface was 10 times more in the nitrate system. After initial fast heterogeneous nucleation in both nitrate and chloride systems, nucleation, growth, and aggregation occurred in the nitrate system, whereas Ostwald ripening was the dominant heterogeneous precipitation process in the chloride system. In the sulfate system, fast growth of the heterogeneously precipitated particles and fast aggregation of the homogeneously precipitated particles led to the formation of particles larger than the detection limit of GISAXS/SAXS. Thus, the sizes of the particles precipitated on quartz surface and in solution were analyzed with AFM and DLS, respectively. This study provides unique qualitative and quantitative information about the location (on quartz surfaces vs in solutions), size, volume, and number evolutions of the newly formed hydrous iron oxide particles in the presence of quartz substrate and ubiquitous anions, which can help in understanding the fate and transport of pollutants in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号