首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Popularity of new psychoactive substances, known as legal highs or herbal highs, is continuously growing. These products are typically sold via internet and in so-called head shops. The aim of this study was to identify active ingredients of herbal highs and to compare their chemical composition. Twenty-nine various products seized by the police in one of the “head shops” were analysed. Herbal mixtures (0.2 g) were prepared by ultrasonic-assisted extraction with 2.0 ml of ethanol for 2 h. The extracts were analysed by gas chromatography coupled to mass spectrometry (GC/MS). The main active compounds of the herbal mixtures were synthetic cannabinoids: JWH-018, JWH-073 and cannabicyclohexanol (CP-47,497-C8-homolog). Their content differed between the products; some contained only one cannabinoid whereas the others contained two or more. Cluster analysis and principal component analysis revealed that chemical composition of many products was very similar. The similarity was connected with their flavour and not the common name. This statement was true for the synthetic cannabinoids, other potential agonists of cannabinoid receptors (amides of fatty acids) and ingredients of natural origin and confirms that herbal highs are a threat to human health because the purchaser has no information on their real composition.  相似文献   

2.
3.
Herbal mixtures like ‘Spice’ with potentially bioactive ingredients were available in many European countries since 2004 and are still widely used as a substitute for cannabis, although merchandized as ‘herbal incense’. After gaining a high degree of popularity in 2008, big quantities of these drugs were sold. In December 2008, synthetic cannabinoids were identified in the mixtures which were not declared as ingredients: the C8 homolog of the non‐classical cannabinoid CP‐47,497 (CP‐47,497‐C8) and a cannabimimetic aminoalkylindole called JWH‐018. In February 2009, a few weeks after the German legislation put these compounds and further pharmacologically active homologs of CP‐47,497 under control, another cannabinoid appeared in ‘incense’ products: the aminoalkylindole JWH‐073. In this paper, the results of monitoring of commercially available ‘incense’ products from June 2008 to September 2009 are presented. In this period of time, more than 140 samples of herbal mixtures were analyzed for bioactive ingredients and synthetic cannabimimetic substances in particular. The results show that the composition of many products changed repeatedly over time as a reaction to prohibition and prosecution of resellers. Therefore neither the reseller nor the consumer of these mixtures can predict the actual content of the ‘incense’ products. As long as there is no possibility of generic definitions in the controlled substances legislation, further designer cannabinoids will appear on the market as soon as the next legal step has been taken. This is affirmed by the recent identification of the aminoalkylindoles JWH‐250 and JWH‐398. As further cannabinoids can be expected to occur in the near future, a continuous monitoring of these herbal mixtures is required. The identification of the synthetic opioid O‐desmethyltramadol in a herbal mixture declared to contain ‘kratom’ proves that the concept of selling apparently natural products spiked with potentially dangerous synthetic chemicals/pharmaceuticals is a continuing trend on the market of ‘legal highs’. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Analysis of drugs in hair is often used as a routine method to obtain detailed information about drug ingestion. However, few studies have been conducted on deposition of synthetic cannabinoids and metabolites in hair. The first purpose of this study was to establish and validate an analytical method for detection of JWH-018, JWH-073, and their metabolites in hair, by use of UHPLC–MS–MS, for forensic application. The second purpose was to investigate the distribution of synthetic cannabinoids metabolites in hair and the effect of hair pigmentation, by use of an animal model. For this, JWH-073 was chosen as a representative synthetic cannabinoid. Finally, the developed method was applied to hair samples from 18 individuals suspected of synthetic cannabinoids use. JWH-018, JWH-073, and their metabolites were extracted from hair with methanol. The extract was then filtered and analyzed by UHPLC–MS–MS with an electrospray ion source in positive-ionization mode. Validation proved the method was selective, sensitive, accurate, and precise, with acceptable linearity within the calibration ranges. No significant variations were observed when different sources of both human and rat hair were used. The animal study demonstrated that JWH-073 N-COOH M was the major metabolite of JWH-073 in rat hair, and hair pigmentation did not have a significant effect on incorporation of JWH-073 and its metabolites into hair. In the analysis of 18 authentic hair samples, only JWH-018, JWH-018 N-5-OH M, and JWH-073 were detected, with wide variation in concentrations.  相似文献   

5.
The analysis of synthetic cannabinoids in human matrices is of particular importance in the fields of forensic and clinical toxicology since cannabis users partly shift to the consumption of ‘herbal mixtures’ as a legal alternative to cannabis products in order to circumvent drug testing. However, comprehensive methods covering the majority of synthetic cannabinoids already identified on the drug market are still lacking. In this article, we present a fully validated method for the analysis of 30 synthetic cannabinoids in human serum utilizing liquid‐liquid extraction and liquid chromatography‐electrospray ionization tandem mass spectrometry. The method proved to be suitable for the quantification of 27 substances. The limits of detection ranged from 0.01 to 2.0 ng/mL, whereas the lower limits of quantification were in the range from 0.1 to 2.0 ng/mL. The presented method was successfully applied to 833 authentic serum samples during routine analysis between August 2011 and January 2012. A total of 227 (27%) samples was tested positive for at least one of the following synthetic cannabinoids: JWH‐018, JWH‐019, JWH‐073, JWH‐081, JWH‐122, JWH‐200, JWH‐203, JWH‐210, JWH‐307, AM‐2201 and RCS‐4. The most prevalent compounds in positive samples were JWH‐210 (80%), JWH‐122 (63%) as well as AM‐2201 (29%). Median serum concentrations were all below 1.0 ng/mL. These findings demonstrate a significant shift of the market of synthetic cannabinoids towards substances featuring a higher CB1 binding affinity and clearly emphasize that the analysis of synthetic cannabinoids in serum or blood samples requires highly sensitive analytical methods covering a wide spectrum of substances. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Smoking mixtures containing cannabimimetic indoles may still be illegally sold in Russia. Although a method for their analysis is required for forensic toxicology authorities, the detection of synthetic cannabinoids is a complicated analytical task because of low anticipated concentrations in urine and the lack of in vivo data on their metabolism. Here, the urinary metabolites of 1-pentyl-3-(1-naphthoyl)indole (JWH-018) and a procedure for determining them in urine are reported. Using gas and high-performance liquid chromatography combined with tandem mass spectrometry, two main monohydroxylated metabolites were identified in urine. Based on differences in their electron ionization MS/MS spectra, it is supposed that one of them is formed by the hydroxylation of an indole ring and the other, by the hydroxylation of a pentyl side chain. The main metabolites are almost completely excreted as conjugates with glucuronic acid. The structure of minor metabolites was proposed. The parent compound was not detected in urine at a level of 50 pg/mL 12 h after administration.  相似文献   

7.
A rapid and simple gas chromatography–mass spectrometry (GC-MS) method was developed and validated to identify and quantify synthetic cannabinoids in the materials seized during drug trafficking. Accuracy and reproducibility of the method were improved by using deuterated JWH-018 and JWH-073 as internal standards. Validation results of the GC-MS method showed that it was suitable for simultaneous qualitative and quantitative analyses of synthetic cannabinoids, and we analyzed synthetic cannabinoids in seized materials using the validated GC-MS method. As a result of the analysis, ten species of synthetic cannabinoids were identified in dried leaves (n?=?40), bulk powders (n?=?6), and tablets (n?=?14) seized in Korea during 2009–2012, as a single ingredient or as a mixture with other active co-ingredients. JWH-018 and JWH-073 were the most frequently identified compounds in the seized materials. Synthetic cannabinoids in the dried leaves showed broad concentration ranges, which may cause unexpected toxicity to abusers. The bulk powders were considered as raw materials used to prepare legal highs, and they contained single ingredient of JWH-073, JWH-019, or JWH-250 with the purity over 70 %. In contrast, JWH-018 and JWH-073 contents in the tablets were 7.1–13.8 and 3.0–10.2 mg/g, respectively. Relatively low contents in the tablets suggest that the synthetic cannabinoids may have been added to the tablets as supplements to other active co-ingredients.  相似文献   

8.
The objective of this study was to compare the performance of an immunoassay screening for synthetic cannabinoids with a newly developed confirmation method using liquid chromatography quadrupole time-of-flight mass spectrometry. The screening included metabolites from JWH-018, JWH-073, and AM-2201. The confirmation included metabolites from AM-2201, JWH-018, JWH-019, JWH-073, JWH-081, JWH-122, JWH-210, JWH-250, JWH-398, MAM-2201, RCS-4, and UR-144. The immunoassay was tested and found to have no cross-reactivity with UR-144 metabolites but considerable cross-reactivity with MAM-2201 and JWH-122 metabolites. Sensitivity and specificity for the immunoassay were evaluated with 87 authentic urine samples and found to be 87 % and 82 %, respectively. With a cutoff at 2 ng/ml, the confirmation showed 80 positive findings in 38 cases. The most common finding was JWH-122 5-OH-pentyl, followed by JWH-018 5-OH-pentyl. There were 9 findings of UR-144 metabolites and 3 of JWH-073 metabolites. In summary, the immunoassay performed well, presenting both high sensitivity and specificity for the synthetic cannabinoids present in the urine samples tested. The rapid exchange of one cannabinoid for another may pose problems for immunoassays as well as for confirmation methods. However, we consider time-of-flight mass spectrometry to be superior since new metabolites can be quickly included and identified.
Figure
Spice metabolites in urine  相似文献   

9.
Herbal mixtures, such as ‘Spice’, containing cannabimimetic compounds are easily available on the Internet and have become increasingly popular among people having to undergo urine drug testing, as these compounds are not detected by current immunochemical tests. For analysis of urine samples, knowledge of the main metabolites is necessary as the unchanged compounds are usually not found in urine after consumption. In this paper, the identification of the major metabolites of the currently most common seven synthetic cannabinoids is presented. Urine samples from patients of psychiatric facilities known to have consumed synthetic cannabinoids were screened by LC‐MS/MS and HR‐MS/MS techniques, and the major metabolites for each of the following synthetic cannabinoids were identified by their enhanced product ion spectra and accurate mass measurement: JWH‐018, JWH‐073, JWH‐081, JWH‐122, JWH‐210, JWH‐250 and RCS‐4. The major metabolic pathway is monohydroxylation either at the N‐alkyl side chain, the naphthyl moiety or the indole moiety. In addition, metabolites with carboxylated alkyl chains were identified for some of the compounds. These results facilitate the design of urine screening methods for detecting consumption of synthetic cannabinoids. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This pilot study was performed to study the main metabolic reactions of four synthetic cannabinoids: JWH-015, JWH-098, JWH-251, and JWH-307 in order to setup a screening method for the detection of main metabolites in biological fluids. In silico prediction of main metabolic reactions was performed using MetaSite? software. To evaluate the agreement between software prediction and experimental reactions, we performed in vitro experiments on the same JWHs using rat liver slices. The obtained samples were analyzed by liquid chromatography-quadrupole time-of-flight and the identification of metabolites was executed using Mass-MetaSite? software that automatically assigned the metabolite structures to the peaks detected based on their accurate masses and fragmentation. A comparison between the experimental findings and the in silico metabolism prediction using MetaSite? software showed a good accordance between experimental and in silico data. Thus, the use of in silico metabolism prediction might represent a useful tool for the forensic and clinical toxicologist to identify possible main biomarkers for synthetic cannabinoids in biological fluids, especially urine, following their administration.
Figure
JWH-098: Most probable predicted sites of metabolism and main metabolites formed in vitro  相似文献   

11.
Considering the vast variety of synthetic cannabinoids and herbal mixtures – commonly known as ‘Spice’ or ‘K2’ – on the market and the resulting increase of severe intoxications related to their consumption, there is a need in clinical and forensic toxicology for comprehensive up‐to‐date screening methods. The focus of this project aimed at developing and implementing an automated screening procedure for the detection of synthetic cannabinoids in serum using a liquid chromatography‐ion trap‐MS (LC‐MSn) system and a spectra library‐based approach, currently including 46 synthetic cannabinoids and 8 isotope labelled analogues. In the process of method development, a high‐temperature ESI source (IonBoosterTM, Bruker Daltonik) and its effects on the ionization efficiency of the investigated synthetic cannabinoids were evaluated and compared to a conventional ESI source. Despite their structural diversity, all investigated synthetic cannabinoids benefitted from high‐temperature ionization by showing remarkably higher MS intensities compared to conventional ESI. The employed search algorithm matches retention time, MS and MS2/MS3 spectra. With the utilization of the ionBooster source, limits for the automated detection comparable to cut‐off values of routine MRM methods were achieved for the majority of analytes. Even compounds not identified when using a conventional ESI source were detected using the ionBooster‐source. LODs in serum range from 0.1 ng/ml to 0.5 ng/ml. The use of parent compounds as analytical targets offers the possibility of instantly adding new emerging compounds to the library and immediately applying the updated method to serum samples, allowing the rapid adaptation of the screening method to ongoing forensic or clinical requirements. The presented approach can also be applied to other specimens, such as oral fluid or hair, and herbal mixtures and was successfully applied to authentic serum samples. Quantitative MRM results of samples with analyte concentrations above the determined LOD were confirmed as positive findings by the presented method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The Aconitum species (Ranunculaceae) are widely distributed in northern Asia and North America. Their roots are popularly used in herbal medicines in China and Japan. Many cases of accidental, suicidal and homicidal intoxication with this plant have been reported; some of these were fatal because the toxicity of Aconitum is very high. It is thus important to detect and quantify Aconitum alkaloids in body fluids, with high sensitivity. We have developed a simple and sensitive method for measuring four kinds of Aconitum alkaloids (aconitine, hypaconitine, jesaconitine and mesaconitine) by LC/electrospray (ESI)-time-of-flight (TOF)-MS. For all of them, only molecular ions were observed at an orifice voltage of 75 V; at 135 V, base peaks corresponding to [M - 60 + H]+ ions were observed. These four compounds and methyllycaconitine (internal standard) in human plasma samples were purified by solid-phase extraction. The four extracted compounds were completely separated in mass chromatograms; the calibration curves showed good linearity in the range 10-300 ng/ml, and the detection limits were estimated to be 0.2-0.5 ng/ml. Using our method, we also determined the amounts of these compounds in tuber samples. The present method is applicable in clinical and forensic toxicology.  相似文献   

13.
A new cannabimimetic phenylacetylindole (cannabipiperidiethanone, 1) has been found as an adulterant in a herbal product which contains two other known synthetic cannabinoids, JWH-122 and JWH-081, and which is distributed illegally in Japan. The identification was based on analyses using GC-MS, LC-MS, high-resolution MS and NMR. Accurate mass spectrum measurement showed the protonated molecular ion peak of 1 at m/z 377.2233 [M+H]? and the molecular formula of 1 was C??H??N?O?. Both mass and NMR spectrometric data revealed that 1 was 2-(2-methoxyphenyl)-1-{1-[(1-methylpiperidin-2-yl)methyl]-1H-indol-3-yl}ethanone. Compound 1 has a mixed structure of known cannabimimetic compounds: JWH-250 and AM-2233. Namely, the moiety of phenylacetyl indole and N-methylpiperidin-2-yl-methyl correspond to the structure of JWH-250 and AM-2233, respectively. However, no synthetic, chemical or biological information about 1 has been reported. A binding assay of compound 1 to cannabinoid receptors revealed that 1 has affinity for the CB? and CB? (IC??=591, 968 nM, respectively) receptors, and shows 2.3- and 9.4-fold lower affinities than those of JWH-250. This is the first report to identify cannabimimetic compound (1) as a designer drug and to show its binding affinity to cannabinoid receptors.  相似文献   

14.
The delta9-tetrahydrocannabinol (delta9-THC) content was identified and determined quantitatively using a Gas Chromatography Detector (Gas Chromatography-Electron Ion Detector) instrument in samples of illicit herbal cannabis. Law enforcement authorities sent the samples to the Department of Forensic Medicine and Toxicology, University of Athens, for toxicological analysis. The concentrations of delta9-THC in these samples ranged from 0.08% to 4.41%. Such concentrations suggest that Greece might be at high risk, as an area for the illicit cultivation of "pedigree" cannabis plants. The forensic aspects of cannabis classification are discussed.  相似文献   

15.
Cao G  Cai H  Cong X  Liu X  Ma X  Lou Y  Qin K  Cai B 《The Analyst》2012,137(16):3828-3835
The sulfur-fumigation process can induce changes in the contents of volatile compounds and the chemical transformation of herbal medicines. Although literature has reported many methods for analyzing volatile target compounds from herbal medicine, all of them are largely limited to target compounds and sun-dried samples. This study provides a comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOF/MS) method based on a chemical profiling approach to identify non-target and target volatile compounds from sun-dried and sulfur-fumigated herbal medicine. Using Chrysanthemum morifolium as a model herbal medicine, the combined power of this approach is illustrated by the identification of 209 and 111 volatile compounds with match quality >80% from sun-dried and sulfur-fumigated Chrysanthemum morifolium, respectively. The study has also shown that sulfur-fumigated samples showed a significant loss of the main active compounds and a more destructive fingerprint profile compared to the sun-dried ones. 50 volatile compounds were lost in the sulfur-fumigated Chrysanthemum morifolium sample. The approach and methodology reported in this paper would be useful for identifying complicated target and non-target components from various complex mixtures such as herbal medicine and its preparations, biological and environmental samples. Furthermore, it can be applied for the intrinsic quality control of herbal medicine and its preparations.  相似文献   

16.
The herbal stimulants Ephedra species, Catha edulis (khat), and Lophophora williamsii (peyote) have been abused for a long time. In recent years, the herbal drug market has grown owing to publicity on the Internet. Some ingredients of these plants are also ingredients of cold remedies. The aim of the presented study is to develop a multianalyte procedure for detection and validated quantification of the phenalkylamines ephedrine, pseudoephedrine, norephedrine, norpseudoephedrine, methylephedrine, methylpseudoephedrine, cathinone, mescaline, synephrine (oxedrine), and methcathinone in plasma. After mixed-mode solid-phase extraction of 1 ml of plasma, the analytes were separated using a strong cation exchange separation column and gradient elution. They were detected using a Q-Trap LC-ESI-MS/MS system (MRM mode). Calibration curves were used for quantification using norephedrine-d3, ephedrine-d3, and mescaline-d9 as internal standards. The method was validated according to international guidelines. The assay was selective for the tested compounds. It was linear from 10 to 1000 ng/ml for all analytes. The recoveries were generally higher than 70%. Accuracy ranged from - 0.8 to 20.0%, repeatability from 2.5 to 12.3%, and intermediate precision from 4.6 to 20.0%. The lower limit of quantification was 10 ng/ml for all analytes. No instability was observed after repeated freezing and thawing or in processed samples. The applicability of the assay was tested by analysis of authentic plasma samples after ingestion of different cold medications containing ephedrine or pseudoephedrine, and after ingestion of an aqueous extract of Herba Ephedra. After ingestion of the cold medications, only the corresponding single alkaloids were detected in human plasma, whereas after ingestion of the herb extract, all six ephedrines contained in the plant were detected. The presented LC-MS/MS assay was found applicable for sensitive detection and accurate and precise quantification of all studied analytes in plasma.  相似文献   

17.
18.
The use of sub-2?µm particles columns is finding its use in ultrahigh-pressure supercritical fluid chromatography (UHPSFC), opening up for fast analysis and high-resolution separations. The development of new and more robust systems also makes the technique more interesting for bioanalytical analysis, where the need for reproducible and fast analysis with little downtime is great. One area where the use of UHPSFC could become a useful tool is in the separation of structural isomers of new psychoactive substances (NPS). 2-, 3-, and 4- structural isomers of fluoroamphetamine, fluoromethamphetamine, and methylmethcathinone, isomeric pairs of the synthetic cannabinoids UR-144/UR-144 degradant, XLR-11/XLR-11 degradant, JWH-015/JWH-073, and JWH-019/JWH-122, as well as amphetamine and several stable isotope-labeled amphetamine internal standards were separated with UHPSFC-MS/MS and compared with ultrahigh-pressure liquid chromatography (UHPLC) MS/MS. NPS isomers that were difficult to separate with reversed-phase UHPLC-MS/MS were separated by UHPSFC; in most cases with an orthogonal retention order to UHPLC. In contrast to the behavior seen when using reversed-phase UHPLC, the deuterated amphetamines eluted later than amphetamine with UHPSFC. 13C6-labeled amphetamine coeluted with amphetamine for all conditions, making this the best choice of an internal standard.  相似文献   

19.
A potent synthetic cannabinoid receptor agonist, JHW-018, was recently detected as one of the most prominent active agents in abusively used incenses such as Spice and other herbal blends. The high pharmacological and addictive potency of JWH-018 highlights the importance of elucidating the metabolism of JWH-018, without which a meaningful insight into its pharmacokinetics and its toxicity would not be possible. In the present study, the cytochrome P450 phase I metabolites of JWH-018 were investigated, after in vitro incubation of the drug with human liver microsomes, followed by liquid chromatography–tandem mass spectrometry analysis. This revealed monohydroxylation of the naphthalene ring system, the indole moiety, and the alkyl side chain. In addition, observations were made of dihydroxylation of the naphthalene ring system, and the indole moiety, or as result of a combination of monohydroxylations of both the naphthalene ring system and the indole moiety or the alkyl side chain, or a combination of monohydroxylations of both the indole ring system and the alkyl side chain. There is also evidence of trihydroxylation at different locations of the hydroxyl groups in the molecule. Furthermore, dehydration of the alkyl side chain, in combination with both monohydroxylation and dihydroxylation as well as arene oxidation of the naphthalene ring system, combined with both monohydroxylation and dihydroxylation at different sites of oxidation were found. N-dealkylation also in combination with both monohydroxylation and dihydrodiol formation of the N-dealkylated metabolite was detected. Finally, a metabolite was found carboxylated at the alkyl side chain.  相似文献   

20.
Although various techniques have been employed to analyze drug metabolites, the metabolism of multicomponent herbal medicine has seldom been fully addressed. In contrast to chemical drugs, a number of compounds in herbal medicine could get into circulation and then be metabolized. Metabolism study on active constituents in herbal medicine is a good way for us to explain and predict a variety of events related to the efficacy and toxicity of herbal medicine. The present work aims to elucidate the multicomponent metabolic characteristics of a herbal medicine by the combination of plasma pharmacochemistry and microdialysis sampling. Anemarrhena asphodeloides, a well‐known traditional Chinese medicine, was chosen as a model. After oral administration of A. asphodeloides saponin extract to rats, microdialysis samples were collected continuously in the jugular vein and analyzed by ultrahigh‐performance LC/quadrupole‐TOF MS. The identification of compounds in biosamples was achieved by accurate mass measurement and detailed fragmentation pathway analysis. The results showed that unbound constituents in blood circulation of the rat included seven parent saponins and six metabolites, which might be the potential active components in vivo. Among which, three metabolites have not been previously reported and were identified in this study. It is the first report on systemic metabolism of total saponins of A. asphodeloides in mammalian plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号