首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low frequency (100 kHz) discharge in Ar-H2 and CH3SiCl3-Ar-H2 mixtures was studied to obtain information on the processes involved in plasma deposition of SixCy:H films from CH3SiCl3-Ar-H2 plasma once the properties of Ar-H2 plasma are known. The plasmas were studied using optical emission spectroscopy. The addition of small amounts of nitrogen to the plasma mixtures also permitted the use of an actinometry technique. First, plasma parameters (electron density and temperature) and actinometric concentrations of atomic hydrogen in an argon–hydrogen plasma were investigated as a function of the hydrogen content in the feed. Second, the emission intensities of Si, Si+, CH, H, Ar and Ar+ species produced in the CH3SiCl3-Ar-H2 discharge were analysed as a function of time following the introduction of CH3SiCl3 (methyltrichlorosilane, MTCS) to the argon–hydrogen plasmas with various proportions of the feed gasses. The results reveal a rapid decay of the Si-excited state number density versus time, while those of Si+ and CH fell off more slowly. The emission of atomic silicon was believed to be a result of electron impact dissociative and excitation processes occurring in the bulk of the discharge, whereas the Si+ and CH seemed to originate mainly from products of sputtering of the growing film surface. The fragmentation of the MTCS associated with HCl formation and enhanced atomic hydrogen production as a result of HCl dissociation are proposed. Variations in the radical densities of H and CH3 were determined using an actinometry technique. The results indicate a significant role for H2 in gas-phase reactions occurring in the CH3SiCl3-Ar-H2 plasma, as well as in gas-surface interactions, leading to competition between deposition and chemical sputtering of already deposited material.  相似文献   

2.
The hydrogen atom yield in pure-H2 RF and microwave-sustained discharges is investigated both theoretically and experimentally. A particle balance model is developed that provides the concentrations of the H, H2, H+, H 2 + , and H 3 + species. It is also shown that an approximate solution of this model is adequate for calculating the concentration of H atoms (required, for instance, in diamond film deposition) in the 0.1–10 torr range. Next, the validity of the actinometry technique applied to the determination of the H-atom density in pure-H2 discharges is examined. Using this diagnostic, it is observed that the H-atom concentration decreases when the vessel wall temperature increases, owing to the increased efficiency of atomic hydrogen recombination on the wall. To overcome this effect, the discharge tube wall is cooled off with dimethyl polysiloxane, a low-loss dielectric liquid. It improves significantly the H-atom concentration at 2450 MHz provided the pressure is typically below a few torr and the power density is not too high.  相似文献   

3.
The kinetics of the formation of hydrogen peroxide by the sonolysis of light and heavy water in argon and oxygen atmospheres was investigated. The sonochemical reaction has a zero order with respect to hydrogen peroxide (H2O2, D2O2, or DHO2). The measurement of the kinetic isotope effect (α), defined as the ratio of the reaction rates in H2O and D2O, carried out under argon gave a value of 2.2±0.3. The observed isotope effect decreases with an increase in the concentration of light water in H2O−D2O mixtures. No isotope effect is displayed in the oxygen atmosphere (α=1.05±0.10). The isotope effect is determined presumably by the mechanism of sonochemical decomposition of water molecules, which includes the H2O−Ar* and D2O−Ar* energy exchange (where Ar* are argon atoms in the3P2.0 excited state) in the nonequilibrium plasma generated by a shock wave, arising upon a cavitation collapse. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 645–649, April, 2000.  相似文献   

4.
Summary The results obtained from measurements of the secondary ion yields of VH n (VD n )-samples as a function of the D2 partial pressure and of the Ar+ primary ion current density are discussed. The use of D2 instead of H2 gas and the observation of H- and D-specific mass peaks in standardized spectra allow to determine only the hydrogen (deuterium) specific effects, and to represent graphically the secondary ion yields of different species (H+, D+, V+, VH+, V 2 + , V2H+ ...) — the intensities differ by more than 5 orders of magnitude — in a relative mode elucidating the influences of bulk hydrogen (deuterium) and of hydrogen adsorbed from the residual gas atmosphere.  相似文献   

5.
The hydrogen (H)/sodium (Na) interface is of great interest in glass corrosion research. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is one of the few techniques that can provide nanoscale H and Na imaging simultaneously. However, the optimized condition for ToF-SIMS imaging of H in glass is still unclear. In H depth profiling using ToF-SIMS, H background control is a key, in which an analysis ion beam and a sputtering ion beam work together in an interlaced mode to minimize it. Therefore, it is of great interest to determine if an auxiliary sputtering ion beam is also necessary to control H background in ToF-SIMS imaging of H. In this study, H imaging with and without auxiliary sputtering beams (Cs+, O2+, and Arn+) was compared on a corroded international simple glass (ISG). It was surprising that the H/Na interface could be directly imaged using positive ion imaging without any auxiliary sputtering ion beam under a vacuum of 2 to 3 × 10−8 mbar. The H+ background was about 5% atomic percent on the pristine ISG glass, which was significantly lower than the H concentration in the alteration layer (~15%). Moreover, positive ion imaging could show distributions of other interesting species simultaneously, providing more comprehensive information of the glass corrosion. If an auxiliary O2+ sputtering ion beam was used, the H+ background could be reduced but still higher than that in the depth profiling. Besides, this condition could cause significant loss of signal intensities due to strong surface charging.  相似文献   

6.
In the mass spectrum of an argon inductively coupled plasma (ICP), there is a peak due to the presence of the argon dimer ion, Ar2+. Using elementary statistical mechanics, an attempt is made to elucidate the mechanism responsible for this ion's presence in the ICP, The assumption of local thermodynamic equilibrium (LTE) in the ICP leads to three possible mechanisms that could be responsible for the presence of the argon dimer ion, however, the results of the calculations show that only one of the mechanisms agrees with experiment. The experimental measurements of the number density ratio of Ar2+ to Ar+, against which the theoretical values are compared, were taken using inductively coupled plasma mass spectrometry (ICP-MS),  相似文献   

7.
L‐Cysteine hydrogen fluoride, or bis(L‐cysteinium) difluoride–L‐cysteine–hydrogen fluoride (1/1/1), 2C3H8NO2S+·2F·C3H7NO2S·HF or L‐Cys+(L‐Cys...L‐Cys+)F(F...H—F), provides the first example of a structure with cations of the `triglycine sulfate' type, i.e.A+(A...A+) (where A and A+ are the zwitterionic and cationic states of an amino acid, respectively), without a doubly charged counter‐ion. The salt crystallizes in the monoclinic system with the space group P21. The dimeric (L‐Cys...L‐Cys+) cation and the dimeric (F...H—F) anion are formed via strong O—H...O or F—H...F hydrogen bonds, respectively, with very short O...O [2.4438 (19) Å] and F...F distances [2.2676 (17) Å]. The F...F distance is significantly shorter than in solid hydrogen fluoride. Additionally, there is another very short hydrogen bond, of O—H...F type, formed by a L‐cysteinium cation and a fluoride ion. The corresponding O...F distance of 2.3412 (19) Å seems to be the shortest among O—H...F and F—H...O hydrogen bonds known to date. The single‐crystal X‐ray diffraction study was complemented by IR spectroscopy. Of special interest was the spectral region of vibrations related to the above‐mentioned hydrogen bonds.  相似文献   

8.
The pulsed power operation mode of a radiofrequency (rf) glow discharge time‐of‐flight mass spectrometer was investigated, for several ions, in terms of intensity profiles along each pulse period. Particular attention was paid to the plateau and transient afterglow regions. An rf pulse period of 4 ms and a duty cycle of 50% was selected to evaluate the influence of discharge parameters in the afterglow delay and shape of Ar+, Ar2+ and several analytes (Br, Cl, Cu) contained in polymeric layers. Pulse shapes of Ar+ and Ar2+ ions vary with pressure and power. At low pressures the highest intensity is observed in the plateau while at higher pressures (>600 Pa) the afterpeak is the dominant region. Although the influence of the applied power is less noticeable, a widening of the afterglow time regime occurs for Ar+ when increasing the power. Maximum intensity of the argon signal is measured in the afterglow at 30 W, while the area of such afterpeak increases with power. The maximum intensity of Ar2+ is obtained at the highest power employed (60 W) and the ratio maximum intensity/afterglow area remains approximately constant with power. Analytes with ionization potentials below (Cu) or just above (Br) the argon metastable energy show maxima intensities after argon ions decay, indicating they could be ionized by collisions with metastable Ar atoms. Chlorine signals are observed in the afterglow despite their ionization potential is well above the energy of argon metastable levels. Moreover, they follow a similar pattern to that observed for Ar2+, indicating that charge‐transfer process with Ar2+ could play a significant role. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A general method for identifying the origin of a particular polyatomic ion is described. Based on a postulated dissociation reaction, measured ion signal ratios (e.g. Ar2+/Ar+) are combined with mass bias corrections and estimates of the density of the neutral product (usually Ar, O or H atoms) to determine a gas kinetic temperature Tgas. The temperature can also be measured by the reduction in pressure when the ICP is sampled (compared to room temperature argon), or by other means. Dissociation energies and spectroscopic constants for the ions are necessary. For the particular instrument used, some of the findings of this study are: (a) ArO+ and ArN+ can be either dissociated (if the plasma potential is high) or created (if the plasma potential is low) by collisions between the sampler and skimmer; (b) the strongly-bound oxide ions O2+ and MO+ for the rare earths are observed at levels consistent with Tgas ∼5300 K in a ‘hot’ plasma, but ClO+ is formed in excess; and (c) the abundances of most other polyatomic ions like H2O+ and ArH+ correspond to higher densities than would be expected in the ICP itself.  相似文献   

10.
The title compound, C5H12NO2+·C2HO4·C5H11NO2 or HC2O4·(HBET·BET)+ [BET is tri­methyl­glycine (betaine); IUPAC name: 1-carboxy-N,N,N-tri­methyl­methanaminium hydro­xide inner salt], contains pairs of betaine mol­ecules bridged by an H atom, forming dimers linked by a strong hydrogen bond. The hydrogen oxalate anions have a rather unusual star conformation, with an internal torsion angle of 70.1 (4)°. The betaine–betainium dimers are anchored between two zigzag chains of hydrogen oxalate mol­ecules hydrogen bonded head-to-tail running parallel to the b axis. An extended network of C—H⃛O interactions links the anionic chains to the cationic dimers.  相似文献   

11.
Six alkyl alcohols were studied using thermospray mass Spectrometry. Whereas the dominant ion in the spectrum up to a repeller potential of 120 V was [M + NH4]+, above that potential [M + H]+ and fragment ions appeared. The fragments observed were largely due to hydrogen release from alkyl ions ([CnH2n+1]+ – H2 → [CnH2n-1]+) and loss of water or some other stable molecule from the same species. The results are compared with those from ionization of the same alcohols under electron impact and photoionization conditions and with results obtained for methanol under thermospray conditions.  相似文献   

12.
The sources of the migrant hydrogen atom(s) in reactions (a) and (b) in the electron impact mass spectrum of n-propyl benzoate have been investigated: (a) [C6H5CO2C3H7]+ →[C6H5CO2H]+ + C3H6; (b) [C6H5CO2C3H7]+ → [C6H5CO2H2]+ + C3H5sdot;. Deuterium labelling of the propyl group showed that, for reaction (a) at 70 eV ionizing energy 3 ± 1% of the hydrogen originates from C-1 of the propyl group, 86 ± 4% from C-2 and 11 ± 3% from C-3. The specificity of the transfer from C-2 increases as the internal energy of the fragmenting ions decreases, indicating that the results cannot be rationalized in terms of H/D interchanges between positions in the propyl group, but rather that the reaction involves specific, competing, H transfer reactions from each propyl position, in contrast to the high site specificity characteristic of the McLafferty rearrangement. Reaction (b) involves, almost exclusively, transfer of one hydrogen from C-2 and one from C-3 with only very minor participation of C-1 hydrogens. The [C6H5COOH]+ ion produced in reaction (a) fragments further to [C6H5CO]+ + OH. and the labelling results indicate some interchange of the carboxylic hydrogen with (ortho) ring hydrogens for those ions fragmenting in the first drift region. The extent of interchange is less than that observed for fragmentation of the same ion produced by direct ionization of benzoic acid or by reaction (a) in ethyl benzoate.  相似文献   

13.
The catalytic activity of Pt nanoparticles (PtNPs) with different sizes and shapes was investigated in a photocatalytic hydrogen‐evolution system composed of the 9‐mesityl‐10‐methylacridinium ion (Acr+–Mes: photocatalyst) and dihydronicotinamide adenine dinucleotide (NADH: electron donor), based on rates of hydrogen evolution and electron transfer from one‐electron‐reduced species of Acr+–Mes (Acr.–Mes) to PtNPs. Cubic PtNPs with a diameter of (6.3±0.6) nm exhibited the maximum catalytic activity. The observed hydrogen‐evolution rate was virtually the same as the rate of electron transfer from Acr.–Mes to PtNPs. The rate constant of electron transfer (ket) increased linearly with increasing proton concentration. When H+ was replaced by D+, the inverse kinetic isotope effect was observed for the electron‐transfer rate constant (ket(H)/ket(D)=0.47). The linear dependence of ket on proton concentration together with the observed inverse kinetic isotope effect suggests that proton‐coupled electron transfer from Acr.–Mes to PtNPs to form the Pt? H bond is the rate‐determining step for catalytic hydrogen evolution. When FeNPs were used instead of PtNPs, hydrogen evolution was also observed, although the hydrogen‐evolution efficiency was significantly lower than that of PtNPs because of the much slower electron transfer from Acr.–Mes to FeNPs.  相似文献   

14.
Mass spectra of Nb+ and Rh+ complexes with argon ligands exhibit `magic' peaks Nb+Ar4 and Rh+Ar6, similar to observations for V+Ar4 and Co+Ar6, indicating coordinative saturation. A consistent explanation is obtained by assuming that the rare gas ligands seek out electron density minima in the valence shell of the ion, which permit a closer approach to the metal core and a stronger charge-induced dipole bond. Ab initio density functional calculations, which predict stable square planar complexes for the d4 ions and octahedral for the d8 species, support this interpretation and show that rare gas complexes of d4 metal ions fit perfectly well into the coordination chemical framework based on the Jahn–Teller effect.  相似文献   

15.
All three title compounds, C4H7N2+·C4H5O4, (I), C4H7N2+·C5H7O4, (II), and C4H7N2+·C6H9O4·H2O, (III), can be regarded as 1:1 organic salts. The dicarboxylic acids join through short acid bridges into infinite chains. Compound (I) crystallizes in the noncentrosymmetric Cmc21 space group and the asymmetric unit consists of a hydrogen succinate anion located on a mirror plane and a 2‐methylimidazolium cation disordered across the same mirror. The other two compounds crystallize in the triclinic P space group. The carboxylic acid H atom in (II) is disordered over both ends of the anion and sits on inversion centres between adjacent anions, forming symmetric short O...H...O bridges. Two independent anions in (III) sit across inversion centres, again with the carboxylic acid H atom disordered in short O...H...O bridges. The molecules in all three compounds are linked into two‐dimensional networks by combinations of imidazolium–carboxylate N+—H...O and carboxylate–carboxylate O—H...O hydrogen bonds. The two‐dimensional networks are further linked into three‐dimensional networks by C—H...O hydrogen bonds in (I) and by Owater—H...O hydrogen bonds in (III). According to the ΔpKa rule, such 1:1 types of organic salts can be expected unambiguously. However, a 2:1 type of organic salt may be more easily obtained in (II) and (III) than in (I).  相似文献   

16.
In the title compound, C8H12N+·C4H3O4, there is a short and almost linear but asymmetric O—H...O hydrogen bond in the anion. The ions are linked into C22(6) chains by two short and nearly linear N—H...O hydrogen bonds and the chains are further weakly linked into sheets by a single C—H...O hydrogen bond.  相似文献   

17.
Detection of atoms by mass spectrometry has been used to study the reactions of hydrogen azide, HN3, with H atoms and active nitrogen, in a fast flow reactor at pressures of about 1 torr. Stoichiometry and products of the H + HN3 reaction have been determined and the rate constant of the initial step, assumed to be H + HN3 → NH2 + N2, was found to be 2.54 × 10?11 exp (?4600/RT) cm3 molecule?1 s?1, in the temperature range of 300–460K. The formation of NH3 and H2 products has been discussed from the different secondary steps which may occur in the mechanism. For the reaction of active nitrogen with HN3, evidence has been found for the participation of excited nitrogen molecules produced by a microwave discharge through molecular nitrogen. The influence of excited nitrogen molecules has been reduced by lowering the gas flow velocity. It was then possible to study the N + HN3 reaction for which the rate constant of the initial step was found to be 4.9 × 10?15 cm3 molecule?1 s?1 at room temperature. Finally, the occurrence of these elementary reactions has been discussed in the mechanism of the decomposition flame of HN3.  相似文献   

18.
The title compound, C5H7N2+·C4H3O4, crystallizes in space group P21 with one ion pair in the asymmetric unit. The hydrogen maleate anion possesses nearly planar geometry and displays an extremely short intramolecular O—H...O hydrogen bond, with an O...O distance of 2.4198 (19) Å. Classical N—H...O hydrogen bonds, together with short C—H...O contacts, generate an extensive hydrogen‐bonding network.  相似文献   

19.
Single and double hydrogen atom transfers in reactions (1) and (2) in the mass spectra of ethyl benzoate, isopropyl benzoate, and isobutyl benzoate have been investigated with reference to the ortho effect: (1) [C6H5CO2R]+? → [C6H5CO2H]+? (m/z 122) + (R-H); (2) [C6H5CO2R]+? → [C6H5CO2H2]+ (m/z 123) + · (R-2H). It is demonstrated that the intermediate ion [C6H5CO2H2]+ has the protonated benzoic acid structure with the hydrogen atom on the carbonyl group.  相似文献   

20.
In aqueous H2SO4, Ce(IV) ion oxidizes rapidly Arnold's base((p-Me2NC6H4)2CH2, Ar2CH2) to the protonated species of Michler's hydrol((p-Me2NC6H4)2CHOH, Ar2CHOH) and Michler's hydrol blue((p-Me2NC6H4)2CH+, Ar2CH+). With Ar2CH2 in excess, the rate law of the Ce(IV)-Ar2CH2 reaction in 0.100 M H2SO4 is expressed -d[Ce(IV)]/dt = kapp[Ar2CH2]0[Ce(IV)] with kapp = 199 ± 8M?1s?1 at25°C. When the consumption of Ce(IV) ion is nearly complete, the characteristic blue color of Ar2CH+ ion starts to appear; later it fades relatively slowly. The electron transfer of this reaction takes place on the nitrogen atom rather than on the methylene carbon atom. The dissociation of the binuclear complex [Ce(III)ArCHAr-Ce(III)] is responsible for the appearance of the Ar2CH+ dye whereas the protonation reaction causes the dye to fade. In highly acidic solution, the rate law of the protonation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kobs[Ar2CH+] where Kobs = ((ac + 1)[H*] + bc[H+]2)/(a + b[H+]) (in HClO4) and kobs= ((ac + 1 + e[HSO4?])[H+] + bc[H+]2 + d[HSO4?] + q[HSO4?]2/[H+])/(a + b[H+] + f[HSO4?] + g[HSO4?]/[H+]) (in H2SO4), and at 25°C and μ = 0.1 M, a = 0.0870 M s, b = 0.655 s, c = 0.202 M?1s?1, d = 0.110, e = 0.0070 M?1, f = 0.156 s, g = 0.156 s, and q = 0.124. In highly basic solution, the rate law of the hydroxylation reaction of Michler's hydrol blue is -d[Ar2CH+]/dt = kOH[OH?]0[Ar2CH+] with kOH = 174 ± 1 M?1s?1 at 25°C and μ = 0.1 M. The protonation reaction of Michler's hydrol blue takes place predominantly via hydrolysis whereas its hydroxylation occurs predominantly via the path of direct OH attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号