首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weng YQ  Yue F  Zhong YR  Ye BH 《Inorganic chemistry》2007,46(19):7749-7755
A new copper(II) fluorescent sensor 5,10,15,20-tetra((p-N,N-bis(2-pyridyl)amino)phenyl)porphyrin zinc (1) has been designed and synthesized by the Ullmann-type condensation of bromoporphyrin zinc with 2,2'-dipyridylamine (dpa) under copper powder as a catalyst as well as with K2CO3 as the base in a DMF solution. It consists of two separately functional moieties: the zinc porphyrin performs as a fluorophore, and the dpa-linked-to-zinc porphyrin acts as a selected binding site for metal ions. It displays a high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, Mg2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Ag+, Zn2+, Cd2+, Hg2+, and Fe3+) and exhibits fluorescence quenching upon the binding of the Cu2+ ion with an "on-off"-type fluoroionophoric switching property. The detection limit is found to be 3.3 x 10(-7) M (3s blank) for Cu2+ ion in methanol solution, and its fluorescence can be revived by the addition of EDTA disodium solution. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of fluorescent sensors for metal ions.  相似文献   

2.
A novel calix[4]arene-based chemosensor 1 based on Hg2+-induced fluorescence resonance energy transfer (FRET) was synthesized, and its sensing behavior toward metal ions was investigated by UV/vis and fluorescence spectroscopies. Addition of Hg2+ to a CH3CN solution of 1 gave a significantly enhanced fluorescence at approximately 575 nm via energy transfer (FRET-ON) from the pyrenyl excimer to a ring-opened rhodamine moiety. In contrast, addition of Al3+ induced a distinct increase of pyrenyl excimer emission ( approximately 475 nm), while no obvious FRET-ON phenomenon was observed. Different binding behaviors of 1 toward Hg2+ and Al3+ were also proposed for the interesting observation.  相似文献   

3.
Wu Z  Zhang Y  Ma JS  Yang G 《Inorganic chemistry》2006,45(8):3140-3142
Strategies of both self-assembly and metal ion replacement were adopted in the development of new metal ion sensors for Zn2+ and Hg2+. Ligand BPBA, phenylene-bridged bis(pyrrol-2-ylmethyleneamine), could self-assemble to form a molecular square in the presence of Zn2+, which showed strong emission in solution. The fluorescent emission of formed BPBA-Zn2+ dropped with the addition of Hg2+. BPBA could be a good Zn2+ sensor candidate and BPBA-Zn2+ could be a good Hg2+ sensor candidate based on the mechanisms of the chelation-enhanced fluorescence effect and the replacement of central metal ion induced chelation-enhanced fluorescence quenching effect, respectively.  相似文献   

4.
在本文中,我们研制了一种基于T-T碱基错配特异性键合汞离子的荧光传感器用于汞离子的检测。该传感器由两条分别标记了荧光基团(F)和淬灭基团(Q)的DNA探针组成,并且含有两对用于结合汞离子的T-T错配碱基。当汞离子存在时,两条探针之间形成T-Hg2+-T结构,作用力增强,从而拉近了荧光基团与淬灭基团之间的距离,发生能量转移,使荧光信号在一定程度上被淬灭。在优化的条件下,我们使用该传感器对汞离子进行检测,动力学响应范围为50nM到1000nM,线性相关方程为y= 5281.13 - 1650.56 lg[Hg2+] ( R2 = 0.985),检测下限为79nM。此外,我们还考察了该传感器的选择性,当用其它干扰离子(浓度都为1.0µM)代替待测离子进行实验时,没有发生明显的荧光淬灭,说明该传感器具有较高的选择性。该传感器的构建为汞离子的检测提供了一条快速、简便的新途径。  相似文献   

5.
The bacterial Zn2+ metallo-beta-lactamase from B. fragilis is a zinc-enzyme with two potential metal ion binding sites. It cleaves the lactam ring of antibiotics, thus contributing to the acquired resistance of bacteria against antibiotics. The present study bears on the binuclear form of the enzyme. We compare several possible binding modes of captopril, a mercaptocarboxamide inhibitor of several zinc-metalloenzymes. Two diastereoisomers of captopril were considered, with either a D- or an L-proline residue. We have used the polarizable molecular mechanics procedure SIBFA (Sum of Interactions Between Fragments ab initio computed). Two beta-lactamase models were considered, encompassing 104 and 188 residues, respectively. The energy balances included the inter and intramolecular interaction energies as well as the contribution from solvation computed using a continuum reaction field procedure. The thiolate ion of the inhibitor is binding to both metal ions, expelling the bridging solvent molecule from the uncomplexed enzyme. Different competing binding modes of captopril were considered, either where the inhibitor binds in a monodentate mode to the zinc cations only with its thiolate ion, or in bidentate modes involving additional zinc binding by its carboxylate or ketone carbonyl groups. The additional coordination by the inhibitor's carboxylate or carbonyl group always occurs at the zinc ion, which is bound by a histidine, a cysteine, and an aspartate side chain. For both diastereomers, the energy balances favor monodentate binding of captopril via S-. The preference over bidentate binding is small. The interaction energies were recomputed in model sites restricted to captopril, the Zn2+ cations, and their coordinating end side chains from beta-lactamase (98 atoms). The interaction energies and their ranking among competing arrangements were consistent with those computed by ab initio HF and DFT procedures.  相似文献   

6.
Fluorescence-quenching studies involving native protein fluorescence are used to monitor the rates of binding and removal of Hg(II), Cu(II), Ag(I), methylmercury(I), and p-chloro-mercuribenzoate in various protein systems (ovalbumin, bovine serum albumin, myoglobin, lysozyme, and insulin). In some cases, the fluorescence quenching as a function of time can be used to evaluate the rate constants for the binding of a particular metal ion to a protein. In many cases, multiple binding sites with different rate constants can be differentiated. The restoration of fluorescence vs. time on addition of various chelating agents (BAL, EDTA, cysteine and penicilamine) to the metal/protein system can be used to monitor metal ion removal. Multiple binding sites also can be differentiated kinetically in the removal experiments. In some cases, the appearance of multiple steps in the binding or removal or a metal or ion could be explained by small conformational changes. The rates of removal can help in estimating the effectiveness of various reagents as models for drugs in the treatment of heavy-metal poisoning.  相似文献   

7.
8.
The structure and energetics of complexes obtained upon interaction between cysteine and Zn2+, Cd2+, Hg2+ and Cu2+ cations were studied using quantum chemical density functional theory calculations with the 6-311++G** orbital basis set and relativistic pseudopotentials for the cations. Different coordination sites for metal ions on several cysteine conformers were considered. In their lowest energy complexes with the amino acid, the Zn2+ and Cd2+ cations appear to be three-coordinated to carbonyl oxygen, nitrogen and sulfur atoms, whereas the Cu2+ and Hg2+ ions are coordinated to both the carbonyl oxygen and sulfur atoms of one of the zwitterion forms of the amino acid. Bonds of metal cations with the coordination sites are mainly ionic except those established with sulfur, which show a small covalent character that become most significant when Cu2+ and Hg2+ are involved. The order of metal ion affinity proposed is Cu>Zn>Hg>Cd.  相似文献   

9.
A de novo protein design strategy provides a powerful tool to elucidate how heavy metals interact with proteins.Cysteine derivatives of the TRI peptide family (Ac-G(LKALEEK)4G-NH2) have been shown to bind heavy metals in an unusual trigonal geometry. Our present objective was to design binding sites in R-helical scaffolds that are able to form higher coordination number complexes with Cd(II) and Hg(II). Herein, we evaluate the binding of Cd(II) and Hg(II) to double cysteine substituted TRI peptides lacking intervening leucines between sulfurs in the heptads. We compare a -Cysd-X-X-X-Cysa- binding motif found in TRIL12CL16C to the more common -Cysa-X-X-Cysd- sequence of native proteins found in TRIL9CL12C. Compared to TRI, these substitutions destabilize the helical aggregates,leading to mixtures of two- and three-stranded bundles. The three-stranded coiled coils are stabilized by the addition of metals. TRIL9CL12C forms distorted tetrahedral complexes with both Cd(II) and Hg(II), as supported by UV-vis,CD, 113Cd NMR, 199Hg NMR and 111mCd PAC spectroscopy. Additionally, these signatures are very similar to those found for heavy metal substituted rubredoxin. These results suggest that in terms of Hg(II) binding, TRIL9CL12Ccan be considered as a good mimic of the metallochaperone HAH1, that has previously been shown to form protein dimers. TRIL12CL16C has limited ability to generate homoleptic tetrahedral complexes (Cd(SR)42-). These type of complexes were identified only for Hg(II). However, the spectroscopic signatures suggest a different geometry around the metal ion, demonstrating that effective metal sequestration into the hydrophobic interior of the bundle requires more than simply adding two sulfur residues in adjacent layers of the peptide core. Thus, proper design of metal binding sites must also consider the orientation of cysteine sidechains in a vs d positions of the heptads.  相似文献   

10.
A novel fluorescent on-off switchable chemosensor 1 with two different types of cationic binding sites is synthesized, which is composed of a triazole-modified calix[4]crown in the 1,3-alternate conformation. Among 15 metal ions examined, the fluorescence of 1 was strongly quenched by Hg2+, Cu2+, Cr3+, and Pb2+; however, the revival of emission from the strongly quenched 1.Pb2+ complex was achievable by the addition of K+, Ba2+, or Zn2+ ions. Thus, metal ion exchange can trigger an on-off switchable fluorescent chemosensor.  相似文献   

11.
In this paper we report structural and energetic data for cysteine and selenocysteine in the gas phase and the effect of Co(2+) complexation on their properties. Different conformers are analyzed at the DFT/B3LYP level of both bound and unbound species. Geometries, vibrational frequencies, and natural population analysis are reported and used to understand the activity of these species. In particular, we have focused our attention on the role of sulfur and selenium in the metal binding process and on the resulting deprotonation of the thiol and seleniol functions. From the present calculations we are able to explain, both from electronic structure and thermochemical point of views, a metal-induced thiol deprotonation as observed in gas-phase experiments. A similar process is expected in the case of selenocysteine. In fact, cobalt was found to have a preferential affinity with respect to thiolate and selenolate functions. This can be related to the observation that only S and Se are able-in thiolate and selenolate states-to make a partial charge transfer to the cobalt thus forming very stable complexes. Globally, very similar results are found when substituting S with Se, and a very small difference in cobalt binding affinity is found, thus justifying the use of this substitution in X-ray absorption experiments done on biomolecules containing cysteine metal binding pockets.  相似文献   

12.
合成了一种中位-苯甲酸基取代的氟硼二吡咯类染料衍生物(1)并研究了它的金属离子传感性能。在甲醇溶液中,染料1显示出显著的对汞离子具有选择性的"开-关"型亲离子荧光团响应,而对其他一些代表性碱金属、碱土金属、过渡金属及重金属离子等都没有明显的荧光响应;同时染料1在对所检测的金属离子中,通过其溶液颜色的改变对汞离子显示出明显的选择性显色行为,以便实现对汞离子的"裸眼检测"。  相似文献   

13.
由野生及突变株云芝IBL-04制得细胞外锰过氧化物酶(MnPs),并经过硫酸铵沉淀、透析、离子交换和凝胶渗透层析法等步骤提纯.纯化的酶在十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)上于43 kDa区域呈现单一谱带,它适宜的pH值和温度分别为5.0和40°C.突变株MnPs表现出比野生株MnPs更宽的活性pH值范围和更高的热稳定性.从所选突变株所得纯化的MnPs表现出与野生株MnP几乎相同的电泳性质、稳态动力学、金属离子和EDCs降解效率.该生物酶与Mn2+一起催化的反应速率最快,但最高的亲和性对应于ABTS、甲氧基羟苯基乙二醇、4-氨基苯酚和活性染料. Mn2+和Cu2+可显著提高MnPs的活性,但Zn2+, Fe2+, EDTA和半胱氨酸则会不同程度地抑制其活性, Hg2+是最强的活性抑制剂.所有来源的MnPs均可有效催化EDCs、壬基苯酚和二氯苯氧氯酚降解,处理3 h可除去80%以上,在MnPs-介质体系中可进一步提高到90%.综上,云芝MnPs生物酶具有较高的pH适用性和热稳定性、独特的Michaelis-Menten动力学参数和高的EDCs去除效率等特点,因而有望工业化应用.  相似文献   

14.
Although metal ion homeostasis in cells is often mediated through metallochaperones, there are opportunities for toxic metals to be sequestered through the existing transport apparatus. Proper trafficking of CuI in human cells is partially achieved through complexation by HAH1, the human metallochaperone responsible for copper delivery to the Wilson and Menkes ATPase located in the trans‐Golgi apparatus. In addition to binding copper, HAH1 strongly complexes HgII, with the X‐ray structure of this complex previously described. It is important to clarify the solution behavior of these systems and, therefore, the binding of HgII to HAH1 was probed over the pH range 7.5 to 9.4 using 199Hg NMR, 199mHg PAC and UV–visible spectroscopies. The metal‐dependent protein association over this pH range was examined using analytical gel‐filtration. It can be concluded that at pH 7.5, HgII is bound to a monomeric HAH1 as a two coordinate, linear complex (HgS2), like the HgII–Atx1 X‐ray structure (PDB ID: 1CC8). At pH 9.4, HgII promotes HAH1 association, leading to formation of HgS3 and HgS4 complexes, which are in exchange on the μs–ns time scale. Thus, structures that may represent central intermediates in the process of metal ion transfer, as well as their exchange kinetics have been characterized.  相似文献   

15.
Abstract— The picosecond fluorescence kinetics of tryptophan residues in bacteriorhodopsin and some perturbed analogs are measured to study the different tryptophan environments and their changes upon metal cation removal, retinal removal, and M412 trapping. In bacteriorhodopsin, the emission shows four decay components designated Or, C2r, C3r, and C4r in order of increasing lifetimes. The emission wavelength of C3r and C4r is near that found in aqueous solution, while that of C1r is the shortest. The removal of retinal triples the total emission intensity and reduces the number of components to two, suggesting that the observed variation of the lifetimes in bacteriorhodopsin results from the variation of the energy transfer efficiency between different tryptophans and retinal. We conclude that the Or and C2r emission is from the closest tryptophans to the retinal. The quenching of the C3r emission by all metal cations, including those that cannot act as energy acceptors, e.g. Ca2+, is attributed to protein conformation changes caused by metal cation binding which leads to a stronger energy transfer coupling between tryptophans and retinal. The additional quenching of the C2r emission in Eu3+bound bacterioopsin is proposed to result from direct energy transfer between tryptophans and Eu3+.  相似文献   

16.
合成了以半青蓝素为发光基团,分别以Se2N和S2N为结合位点的比色传感器3a和3b,通过紫外-可见光谱研究了它们对各种金属离子的化学传感行为. 结果表明,与含有S原子的主体分子3b相比,含有Se杂原子的主体3a对Hg2+具有较好的识别作用.向主体3a的乙腈水溶液中加入Hg2+后,其吸收光谱在410 nm处出现了一个新的吸收峰,同时溶液颜色由玫瑰红色变为桔黄色. 因此,化合物3a有望成为一种用于检测Hg2+的新型化学传感器.  相似文献   

17.
Anthracene anchored 1,3-di-derivatives of lower rim p-tert-butyl-calix[4]arene were synthesized and characterized. These derivatives were subjected to the binding studies with the divalent metal ions, viz., Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ using fluorescence and absorption spectra. The imine moiety that is in conjugation with the anthryl unit is responsible for quenching the fluorescence in the absence of metal ion, however, in the presence of Fe2+ and Cu2+, the spectra showed very high enhancement in fluorescence intensity indicating that the lone pair present on the imine-N is involved in the metal ion binding and as a result the photo-induced electron transfer is prevented. Based on the photo-physical studies, it has been found that the anthracene derivative that is coupled with the calix[4]arene unit through an imine bond acts as a chemosensor for Fe2+ and Cu2+. The fluorescence studies are further augmented by the absorption spectra.  相似文献   

18.
合成了一系列具有C3v对称性、下缘分别利用Se、Te和S杂原子连接蒽环发光基团的杯[6]芳烃衍生物1-3.通过紫外-可见光谱和荧光光谱研究了它们对各种碱金属离子和过渡态金属离子的化学传感识别行为. 结果表明,含有Se杂原子的主体1在CH2Cl2溶液中对Hg2+表现出良好的选择性. 并且,通过肉眼可以直接观察到溶液颜色由无色变为黄色.通过荧光光谱的连续滴定实验,主体1-Hg2+体系的稳定常数可达(1.12 ? 0.08) ? 105 M-1. 因此,化合物1有望成为一种用于检测Hg2+的新型化学传感器.  相似文献   

19.
He G  Zhao Y  He C  Liu Y  Duan C 《Inorganic chemistry》2008,47(12):5169-5176
A new Cu2+ compound Cu- NB, (where H2 NB is bis(2-hydroxyl-naphthalene-carboxaldehyde) benzil dihydrazone) was synthesized as a highly selective fluorescence chemosensor for the detection of Hg2+ in aqueous media through a displacement "turn-on" signaling strategy. Whereas the coordination of Cu2+ resulted in a considerable quenching of the typical luminescence of the naphthol rings in Cu-NB, the addition of Hg2+ ion led to a dramatic increase in the emission intensity of Cu-NB at about 530 nm (excitation at 430 nm). The competitive fluorescent experiments showed that alkali, alkaline earth metal ions, the group 12 metals Zn2+, Cd2+, the first-row transition-metal ions such as Mn2+, Fe2+, Co2+, and Ni2+, as well as Pb2+ could not inhibit the Hg2+-binding fluorescent enhancement. It is postulated that the existence of Cu2+ in the luminescent probe Cu-NB could turn away the interferences of other metal cations from Hg2+ detection. The optical responses of the free ligand upon addition of Cu2+ ion, and of the Hg-H2NB compound upon the addition of Cu2+ were also investigated for comparisons.  相似文献   

20.
Lee MH  Wu JS  Lee JW  Jung JH  Kim JS 《Organic letters》2007,9(13):2501-2504
A novel tren-based tripodal chemosensor 1 bearing a rhodamine and two tosyl groups was synthesized and its sensing behavior toward metal ions was investigated by UV/vis and fluorescence spectroscopies. Addition of a Hg2+ ion to a CH3CN solution of 1 gave a visual color change as well as significantly enhanced fluorescence, while other ions including Pb2+, Zn2+, Cu2+, Ca2+, Ba2+, Cd2+, Co2+, Mg2+, Ag+, Cs+, Li+, and Na+ induced no or much smaller color/spectral changes, which constituted a Hg2+-selective fluorescent chemosensor (OFF-ON).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号