首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract— A detailed experimental study of the effect of intensity of a 6 ps excitation pulse on the decay kinetics and yield from phycobilisomes (PBsomes) is presented. The fluorescence from the c-phycoerythrin (PE) emission from PBsomes was found to decay as a single exponential with a time of 31 ± 4ps for an excitation intensity <1014 photons/cm2 per pulse. The risetime of the c-phycocyanin (PC) and allophycocyanin (APC) emission from PBsomes was found to be 34 ± 13 ps. Therefore, at low excitation intensities, the energy transfer time between the constituent phycobiliproteins, PE and PC, is measured to be 34 ± 13ps from the fluorescence decay time of PE and the fluorescence risetime of the PC and APC emission. The fluorescence yield from the PE emission component in PBsomes was found to be intensity dependent for excitation intensities >1014 photons/cm2. The decrease in yield with increased intensity in this case occurred at a higher intensity than in the isolated phycobiliprotein PE. The fluorescence yield of the PC and APC emission component was also found to decrease markedly with increasing excitation intensity. This is in contrast to the case of the isolated phycobiliprotein APC which showed only a slight quenching of the fluorescence. The higher quenching observed for the APC emission in the PBsome evidences the higher effective absorption of APC via energy transfer from PE to PC and APC.  相似文献   

2.
Abstract— Phycobilisomes from the blue-green alga Nostoc sp. contain the phycobiliproteins: c -phycoerythrin ( c -PE), c -phycocyanin ( c -PC) and allophycocyanin (APC). The depletion and the recovery of the ground states for the individual phycobiliproteins were measured using picosecond (ps) absorption spectroscopy. In all cases the depletion time was Glops. The recovery was found to be non-exponenzial which could be fitted to a single exponential ('fast' component) and a second component with a relaxation time of > 300ps. The recovery times of the fast component were found to be intensity dependent and for c -PE, c -PC and APC were measured to be 19, 27 and 35ps, respectively, at intensity ( I ) ∼ 7 × 1020 photons/m2 and increased to 54, 55 and 67 ps, respectively, at I ∼ 8 × 1019 photons/m2. The ps absorption data support the assignment of the'fast' component to singlet-singlet exciton annihilation.  相似文献   

3.
The decay of prompt fluorescence in crystalline naphthalene at 300 K, excited by a picosecond 266 nm pulse, has been studied as a function of excitation intensity. Experimental decay curves can be fitted only when the exponential distribution in depth of excitation and the radial (gaussian) intensity profile of the excitation are both taken into account. From an analysis of the decay at early time (?5 ns) a best fit value of the singlet—singlet annihilation rate constant is found γSS = (4 ± 1) × 10?10 cm3 s?1. If the reaction is diffusion-limited, this rate implies an average singlet diffusivity DS = (2 ± 1) × 10?4 cm2 s?1.  相似文献   

4.
Abstract. In this paper we review picosecond fluorescence studies of exciton dynamics in photosynthesis. We discuss some of the exciton interactions that led to artifacts in early picosecond data and outline procedures for avoiding their presence. In the case of high intensity single pulse excitation (> 1013 photons cm2), the dominant mechanism is singlet-singlet fusion, manifesting itself by a decrease in the observed lifetime and quantum efficiency of fluorescence. The manner in which excitons interact in vivo provides an indicator of the topology of the photosynthetic unit (PSU). The shape of the fluorescence quenching curve, as a function of intensity, in particular, can be used to test various models. In addition to fluorescence quenching curves, we also report the results of fluorescence decay following ps laser flashes, using an ultrafast streak camera in four types of systems: (1) organic crystal anologues, (2) chromatophores of various mutants of the photosynthetic bacteria, Rhodopseudomonas sphaeroides, (3) intact cells of the green alga, Chlorella and (4) chloroplasts of higher plants (e.g. spinach).  相似文献   

5.
The fluorescence decay, apparent quantum yield and transmission from chromophores constrained to a microscopic volume using a single picosecond laser excitation were measured as a function of incident intensity. The β subunit of phycoeryhthrin aggregate isolated from the photosynthetic antenna system of Nostoc sp. was selected since it contains only four chromophores in a volume of less than 5.6×104 Å3. The non-exponential fluorescence decay profiles were intensity independent for the intensity range studied (5 × 1013 - 2 × 1015 photon cm?2 per pulse). The apparent decrease in the relative fluorescence quantum yield and increase of the relative transmission with increasing excitation intensity is attributed to the combined effects of ground state depletion and upper excited state absorption. Evidence suggests that exciton annihilation is absent within isolated β subunits.  相似文献   

6.
Abstract— The excitation energy transfer processes in the allophycocyanin (APC) monomer and trimer from phycobilisomes of Polysiphonia urceolata were studied using picosecond time-resolved fluorescence isotropic and anisotropic spectroscopy. Based on our experimental results, conclusions could be drawn as follows: (1) After the processes of exciton localization are finished, the localized excitation energy on any chromophore can be transferred to the other chromophores due to the weak couplings between them, and the processes among three p84-phycocyaninbilin (PCB) chromophores in the center of the ring shape of the APC trimer are more important than those of between a84- and p84-PCB chromophores in the same monomer. (2) The decay time constants of 95 ± 5 ps and 40 ± 5 ps components, observed by us in this work, were assigned to the excitation energy transfer or redistribution between α84- and β84-PCB chromophores in the same monomer of the APC trimer and among three β84-PCB chromophores in the center of the ring shape of the APC trimer, respectively. Specifically, the assignment of the decay constants for the 40 ± 5 ps component was different from those of previous results. (3) Based on the model of Debreczeny, and using the fluorescence residual anisotropy r(∞) with a probing wavelength of 650 nm, the angles between the C3 symmetry axis and transition dipoles of α84- and -PCB chromophores were found to be φa84= 67° and φβ84= 148°, respectively, which are in agreement with the prediction of the X-ray crystal structure of APC. (4) The results show that anisotropy decays, observed with the APC trimer, did exhibit a strongly probing wavelength dependence that did not show up in the monomer.  相似文献   

7.
Abstract— Quantum yield and fluorescence polarization determinations on phycobilisomes and their constituent phycobiliproteins show that phycobilisomes are energetically effective macromolecular structures. Energy migration within the phycobilisome to allophycocyanin, the longest wavelength absorbing and emitting phycobiliprotein, was indicated by the predominant allophycocyanin fluorescence emission which was independent of the phycobiliprotein being excited. The high efficiency of the energy migration inside the phycobilisome was reflected by the low polarized fluorescence. Excitation of phycobilisomes in the region of major absorption (500–650 nm) resulted in degrees of fluorescence polarization between +0.02 and –0.02, whereas in isolated phycobiliproteins the values were 2 to 12 times greater. Furthermore, 94–98° of the excitation energy of phycoerythrin was transferred to phycocyanin and allophycocyanin as determined from comparisons of fluorescence spectra of intact and dissociated phycobilisomes. The fluorescence quantum yields of phycobilisomes were about 0.60–0.68, very similar to that of pure allophycocyanin in solution (0.68). Phycobilisomes isolated from Fremyella diplosiphon and Nostoc sp. (blue-gree algae) have respective quantum yields of 0.68 and 0. 65, and those isolated from Porphyridium cruentum (red alga), about 0.60. In Fremyella diplosiphon and Nostoc sp., which showed a striking adaptation to different wavelengths, the phycobilisome quantum yields only varied from 0.68 to 0.67 and from 0.65 to 0. 60, respectively. The mean transfer time, calculated on the basis of experimental results, was about 280 ± 40 ps for transfer of excitation from the phycoerythrin to the phycocyanin layer in phycobilisomes. This time corresponds to the mean number of jumps, about 28, of the excitation in the phycoerythrin layer before it is captured by phycocyanin. These values are in reasonable agreement with the values of 250 ± 30 ps and 25 jumps, calculated on the basis of a phycobilisome model (of Porphyridium cruentum) and Pearlstein's theory of energy migration devised for a three-dimensional photosynthetic unit. It was also shown that Paillotin's theory of energy migration predicts similar values for mean transfer time and mean number of jumps, if one assumes that phycocyanin is a perfect sink for phycoerythrin excitation.  相似文献   

8.
Abstract— The decay profiles of the fluorescence of dark-adapted spinach chloroplasts (0C) excited with single 30 ps 532 nm laser pulses of varying intensities were measured with a low-jitter streak camera system. By comparing the decay profiles of the fluorescence at low and high laser fluences, i.e. in the absence and presence, respectively, of dynamic bimolecular exciton-exciton annihilation effects, the duration of such dynamic annihilation events can be estimated. A simple model suggests that the influence of bimolecular annihilation events on the fluorescence decay kinetics should disappear within a time interval corresponding to the low intensity, unimolecular lifetime of the exciton population which is subject to exciton-exciton annihilation. The low intensity fluorescence decay profiles are characterized by three to four lifetimes (Reviewed by A. R. Holzwarth, Photochem. Photobiol. 43,707–725, 1986); it is shown here that only the shortest fluorescence components are subject to exciton annihilation, since the kinetics of the fluorescence decay are influenced by annihilations only within the initial 150–200 ps time interval after the excitation pulse. The amplitudes (but not the decay kinetics) of the longer-lived fluorescence components are decreased at high levels of laser pulse excitations, suggesting that these components are derived from the shorter-lived fluorescence decay components. The implications of these results are*discussed within the contexts of current models of the fluorescence in chloroplasts.  相似文献   

9.
Dynamic properties of the picosecond fluorescence of highly enriched reaction-center particles of photosystem I (8 - 10 chlorophylls/P700) prepared from spinach have been investigated. The number (N) of photons used to excite chlorophyll molecules per reaction center was controlled between 0.06 and 80. The 1/e lifetime was ca. 25 ps for N 1. which is much shorter than previously measured lifetimes of photosystem I particles. The initial fluorescence intensity saturated at higher excitation intensities (N ≲ 1). This was interpreted in terms of interaction and annihilation among excited chlorophyll molecules which occur almost entirely within the duration of a laser flash. The spectrum-resolved fluorescence decay was faster at 690 than at 680 nm. This implies that two kinds of antenna chlorophylls, apart from and in close proximity to P700, have different lifetimes. Upon heat treatment a component with a much longer fluorescence decay time was observed. The growth of this component upon heat treatment at increasing temperatures showed a correlation with a decrease in the amount of P700 that could be photooxidized.  相似文献   

10.
Abstract. Fluorescence techniques of various types have been used to study the light-gathering and energy transfer modes for various cryptomonad biliproteins (phycocyanin or phycoerythrins). Analysis of fluorescence polarization and absorption data demonstrates that each cryptomonad biliprotein is composed of at least two distinct types of absorbing chromophore, each attached to the protein through covalent linkages to different polypeptide chains. Examination of the fluorescence emission spectra as a function of excitation at several wavelengths demonstrates that only one of these absorbing chromo-phores is responsible for the fluorescence. This behavior is consistent with a known phenomenon whereby photons are gathered by more than one chromophore and then after radiationless energy transfer are emitted by only one chromophore. Application of Förster dipole-dipole energy transfer theory is made to the study of the mode by which energy absorbed by biliproteins migrates to Chl a. The spectral overlap integral between phycocyanin (Chroomonas sp.) and Chl a is 7.13 ± 10-10cm6mol-1and between phycocyanin and Chl c2 0.25 ± 10-10cm6mol-1. This large difference in overlap suggests, although does not prove, that phycocyanin might transfer energy directly to Chl a without a Chl c2 intermediary. The cryptomonad phycoerythrins may also use this method but a Chl c2 intermediate could not be ruled out for them. Radiationless energy transfer among homogeneous biliproteins is shown to be feasible. All these calculations are based on in vitro spectra and the interpretations extrapolated to the cellular situation, and these tentative conclusions are reached without knowledge of other factors, such as chromophore-chro-mophore orientation and distance, which could greatly influence the energy transfer scheme.  相似文献   

11.
The analysis of the variation with incident flux of the time dependence of the delayed fluorescence in conjunction with the determination of the absolute ground state-first excited triplet absorption coefficients at room temperature, yields the value of γtot = (5.5 ± 2.0) × 10?12 cm3 s?1, for the total triplet-triplet annihilation rate constant in 1,4-dibromonaphthalene crystals. The one-dimensional mutual annihilation rate constant for the triplet exciton motion restricted to linear chains along the crystal c axis is γ1tot = (1.0 ± 0.4) × 103 cm s?1. The results are discussed in terms of recent theories of mutual annihilation of triplets in one-dimensional systems.  相似文献   

12.
The photophysical properties of bonellin, a free-base chlorin, were studied in ethanolic solution. For the singlet excited state the following data were determined: an energy level, EBS= 187 ± 2kJ mol-1, a lifetime, τf= 6.3± 0.1ns at 298 K, and fluorescence quantum yields, φr= 0.07 ± 0.02 (298 K) and 0.20 ± 0.04 (77 K). The S1→ T intersystem crossing quantum yield was φisc= 0.85 ± 0.1. No phosphorescence was observed at 298 K and 77 K. Based on quenching experiments the triplet state energy level was determined to be EBT= 180 ± 20 kJ mol-1. A unimolecular decay rate constant, k1= (2.3 ± 0.5)· 103 s-1 at room temperature, and a molar absorption coefficient, εT443= 9500 ± 500 M-1 cm-1, were obtained for the triplet state. This species was quenched by O2 with ko2= (1.7 ±0.3)· 108M-1 s-1, and by benzoquinone with kq= (5.2 ± 0.3)-109M-1 s-1. The latter value, as well as the high value determined for the triplet annihilation rate constant, k2= (2 ± 0.5)· 109M-1 s-1, might reflect an electron transfer mechanism. Copper bonellin had a shorter triplet lifetime (>20 ns), which offers a possible explanation for its lack of photodynamic action.  相似文献   

13.
Detailed burn wavelength-dependent hole-burning studies of the title complex have been performed. The zero-phonon hole (ZPH) widths for B800 at 4.2 K are 6.0 ± 0.3 cm and are discussed in terms of B80O-B850 and B800-B800 energy transfer. The B800* lifetime is 1.8 ± 0.2 ps. The site inhomogeneous broadening (r,) of B800 is 240 cm?1. The B850 (located at 864 nm at 4.2 K) hole spectra reveal that B850 suffers from significant homogeneous broadening, which is attributed to unit cell exciton level structure and ultrafast interexciton level relaxation. Novel ZPH action spectra lead to the resolution of a minor component at 885 nm, which is the analogue of B870 of Rhodobacter sphaeroides previously assigned as the lowest exciton level of the B850 exciton band. The B870 ZPH width of 2.0 ± 0.2 cm?1for Rhodopseudomonas acidophila leads to a total dephasing time of 5.3 ps, which is attributed to exciton scattering that stems from the energetic inequivalence of neighboring B850 unit cells.  相似文献   

14.
In the process of nuclear excitation in positron-electron annihilation (NEPEA) experimental results have been found to be larger than theoretical predictions. In our previous works we have analyzed the NEPEA experimental data for 1078 keV in 115In and for 1330 keV in 111Cd, respectively, by applying our model of indistinguishable quantum oscillators. In the present work we extend this model to estimate the cross section of nuclear excitation in positron-electron annihilation for 176Lu from the experimentally measured effective cross section of σ eff = (2.6±0.9)·10−29 cm2. The estimated NEPEA cross section of σ=2.7·10−26 cm2 is in very good agreement with that of the theoretical prediction σ th=2.2·10−26 cm2.  相似文献   

15.
Nonlinear excitation of the neurotransmitter serotonin (5HT) in aqueous solution is shown to generate a blue-green-emitting photoproduct in addition to UV fluorescence characteristic of native 5HT. The visible emission rate in diffusional steady-state measurements scales as the sixth power of excitation intensity, demonstrating that absorption of six near-IR photons is required to generate emission of one visible photon. Transient measurements reveal that this process is composed of two sequential nonlinear steps, the first excited by four photons and the second by two photons. These results, in combination with measurements of multiphoton-excited serotonin UV fluorescence, support a model in which 5HT is photochemically transformed as a consequence of four-photon absorption (Etot?6 eV) to a photoproduct that then emits in the visible region via two-photon excitation. A minimum bound of ?10-51 cm4 s photon-1 is observed for the two-photon emission action cross section at 830 nm. Photoionization, rather than reaction with a dissolved oxygen species, appears to be the primary mechanism for generation of the blue-green-emitting photoproduct. The peak intensities required to generate significant blue-green emission (?5 times 1011 W cm-2 from 80 MHz 150 fs titanium: sapphire laser pulses) are approximately five-fold higher than are typically used in two-photon laser scanning microscopy but are still substantially lower than the estimated intensity needed to induce dielectric breakdown of water.  相似文献   

16.
Crytalline tetracene fluorescence was excited at room temperature by high intensity picosecond pulses at 531.5 nm (ca. 1015 photons cm?2 per pulse). The analysis of the decay curves during the first 1.5 ns at high excitations, shows a decay faster than the singlet lifetime measured at low intensity, due to singlet quenching by S–S and S–T interactions, and the appearance of a slow decay due to singlets generated by T–T interactions. Numerical fitting is obtained with rate constants γSS and γSS equal to 5 × 10 ?9 cm3 s?1 within a factor of approximately two.  相似文献   

17.
The delayed luminescence was applied to detect the intermediate processes of the excitedstate decay in the selectively excited phycobiliproteins. Phosphorescence spectra of the five types of phycobiliproteins, R-PE, CPC, APC, R-PC, PEC were reported in this article. The five phycobiliproteins showed different phosphorescence yields, the sequence of which was the same as that of the singlet oxygen yields. Based on the observation, it can be concluded that each of the chromophores possesses a characteristic phosphorescence emission. The delayed luminescence spectra of APC at different aggregation states (trimer, monomer and denatured APC) are researched. The lower aggregation APC showed less phosphorescence because of relative loose structures and less interaction with the surrounding proteins, while the denatured APC showed delayed fluorescence instead of phosphorescence because of triplet-triplet annihilation.  相似文献   

18.
The rate constants 〈σ · υ〉 for collisional de-excitation of the metastable 5D states of Ba+ ions have been determined in an ion trap experiment. TheD-states are selectively populated by pulsed laser excitation of the 6P 1/2 or 6P 3/2 state and the decay at different background pressures is monitored by the change in fluorescence intensity of the excited ions. From the pressure dependence of the decay constants we calculate the de-excitation rate constants for different collision partners, averaged over the velocity distribution of the trapped ion cloud. For He, Ne, H2 and N2 we obtain in the c.m. energy range of 0.1–0.5 eV: 〈σ·υ〉 (He)=3.0±0.2·10?13cm3/s, 〈σ·υ〉 (Ne)=5.1±0.4·10?13cm3/s, 〈σ·υ〉 (H2)=3.7±0.3·10?11cm3/s, 〈σ·υ〉 (N2)=4.4±0.3·10?11cm3/s. The results can be understood qualitatively by a consideration of the ion-atom and ion-molecules interaction potential.  相似文献   

19.
Abstract— Studies of purine absorption and emission in seven solvents differing greatly in dielectric constant and hydrogen bonding potential, reveal a variety of solvent effects. For example, the resolution of structure in the absorption spectrum, the position and/or intensity of the X2 absorption band, the intensity of fluorescence, the magnitude of the long wave-lenth tail, and the position of the X1 absorption band are differentially affected—in the order listed—by the solvents tested. Even though it is possible to correlate the extent of decrease in the n-π* tail with increasing solvent dielectric constant, probably alterations in all of these spectroscopic parameters depend most critically upon the ability of the various solvents to form hydrogen bonds with the hydrogen on N9 and/for with the non-bonding electrons on the purine nitrogens: it is tentatively concluded that the probability of hydrogen bonding is directly correlated with the electronegativity of the aza nitrogens (N7 > N3 > N1). In solvents like isopropanol not all of the non-bonding electrons must be solvated maximally in most purine molecules since there is appreciable fluorescence under conditions where a long wavelength tail is readily observed in the absorption spectrum (alternatively some noa-bonding electrons may not te relevant to fluorescence quenching.) Decreases in fluorescence yield are associated with red shifts in the fluorescence maximum, and in the solvents of highest polarity the fluorescence yield is again small indicating that glycerol and water can enhance radiationless tunneling—presumably by altering Franck-Condon configurations and/or improving electronic-vibrational coupling between solute and solvent. The quantum yield is uniform throughout the atsorption band for a given solvent, but studies in aqueous buffers varying from pH 1 to 11 show that the fluorescence yield is greater for charged than for neutral molecules. Further, the fluorescence excitation peak is red shifted in powders. Since phosphorescence is the predominant emission at 777deg;K and increases in fluorescence can be correlated with the presumed solvation of non-bonding electrons, the singlet excited state of lowest energy in ‘unperturbed’ purine must be n-π* in nature. The shape of the phosphorescence band and the decay lifetime of ? 1 sec at 77°K lead to the conclusion that the emitting triplet is a π-π* state. The eight vibrational structures in phosphorescence emission can be readily grouped into two progressions: there is an average separation of about 1300 cm-1 between peaks within a given progression, and the two sets are mutually displaced by about 500 cm-l. Individual vibrational peaks are favoured in different solvents and the whole band may be shifted up to 500 cm-l. Even larger shifts are observed in charged purine molecules and in powders (up to 3000 cm-l) and the presumed 0–0 band is not observed.  相似文献   

20.
Abstract— An account of a systematic study of the acid-base equilibria of phenazine in the two lowest excited (π,π) states is presented. Pure electronic levels of the free base and of both its protonated forms have been located by spectroscopic methods. Fluorescence, phosphorescence and corresponding absorption spectra have been measured. The O-O energies of the free base, of the singly-protonated species and of the doubly protonated form in the lowest triplet state (3Lα(π, π)) are: 15, 475 cm-1, 14, 175 cm-1 and about 9300cm-1, respectively. This last value has been estimated from the experimentally determined S-T splitting in the other two forms. Corresponding energies of the lowest singlet state (ILα(π,π)) are: 23,500 cm-1, 21,250cm-1 and 17,300 cm-1. The fluorescence of the free base has been found in polar as well as in non-polar solvents and has been checked by the fluorescence excitation spectrum. Fluorescence quantum yields for the free base have been measured: 8.6 times 10-4 and 3.0 × 10-5 in ethanol and hexane solutions, respectively. Emission in ethanol has been ascribed to (π,π), that in hexane —to (π, π). fluorescence. The changes of pKα's under excitation, calculated from the Forster's cycle, are equal: δpKa1=+2.8±0.3; δpKa11?+10±1.5 in the lowest (π, π) triplet state and δpKa1=+4.8±0.5; δpKa11=+8.4 ± 0.5 in the lowest (π,π) singlet state. The δpKa11 in the triplet state is at least as high as that in the 1La(π, π) state. P P P calculations of the electronic levels and of the molecular diagrams have been performed. The energies obtained exceed experimental values by not more than 0.5 eV. An increase of the net charge on nitrogen δp under excitation has been found to be +50, +70 and +19 per cent in the 1La, 1Lb and 3La states, respectively. A good correlation has been found between δpKa1 and δp in both excited states, which have been studied experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号