首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
葡聚糖磁性毫微粒的制备   总被引:13,自引:0,他引:13  
用共沉淀法制备出具有超顺磁性的葡聚糖磁性毫微粒,通过凝胶色谱法和调整离心法分离出葡聚糖磁性毫微粒,研究了制备过程中葡聚糖浓度、铁盐用量、氨水浓度、Fe^3_+/Ge^2+摩尔比和二价钴对磁性葡聚糖毫微粒磁化离的影响。  相似文献   

2.
本文用共沉淀法制备了平均直径为384纳米的α,ω─二羧基聚乙二醇磁性毫微粒.碱性蛋白酶通过吸附交联法被固定于磁性毫微粒.研究了制备过程中的吸附时间、给酶量、戊二醛浓度、pH和离子强度对磁性固定化酶活力及酶固定化率的影响.比较了磁性蛋白酶磁性固定化酶与自由酶的酶学性质,磁性固定化酶的最适温度有改变,但热稳定性显著提高;磁性固定化酶的最适pH向酸性方向移动了1.0个PH单位。  相似文献   

3.
超顺磁性高分子微球的制备与表征   总被引:20,自引:2,他引:18  
用化学共沉淀方法制备了Fe3O4纳米微粒,并用油酸(十八烯酸)和十二烷基苯磺酸钠为双层表面活性剂进行表面修饰,制备了稳定的水分散性纳米Fe3O4可聚合磁流体.在Fe3O4磁流体存在下,将苯乙烯与甲基丙烯酸通过乳液聚合方法制备了磁性高分子微球.透射电镜研究表明,Fe3O4微粒的平均粒径在10nm左右,乳液聚合形成的磁性高分子微球的粒径平均约为130nm;用超导量子干涉仪对微粒及高分子微球进行了磁性表征,结果表明,合成的Fe3O4纳米微粒以及磁性高分子微球均具有超顺磁性.同时,还用红外光谱及X射线衍射表征了磁性高分子微球的化学成分和晶体结构.用热失重方法测得磁性高分子微球中磁性物质的含量为23.6%.  相似文献   

4.
本文用共沉淀法制备了平均直径为384纳米的α,ω-二羧基聚乙二醇磁性毫微粒,碱性蛋白酶通过吸附交联法被固定于磁性毫微粒,研究了制备研究中的吸附时间,给酶量,戊二醛浓度,pH和离子强度对磁性固定化酶活力及酶固定化率的影响。比较了碱性蛋白酶磁性固定化酶与自由酶的酶学性质,磁性固定化酶的最适温度没有改变,但热稳定性显著使高;磁性固定化酶的最适pH向酸性方向移动了1.0个pH单位。  相似文献   

5.
壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究   总被引:35,自引:0,他引:35  
以壳聚糖为包裹材料包埋自制的磁流体 ,制备了具有核 壳结构的磁性毫微粒 ,并偶联色素配基CibacronBlue 3GA(偶联量 1 4 .5μmol/mL)得到了一种新型亲和磁性毫微粒 .结果表明 ,所得亲和磁性微球具有较窄的粒径分布、形状规整 .以牛血清白蛋白 (BSA)和溶菌酶 (Lys)为目标蛋白 ,考察了该亲和磁性毫微粒的吸附性能 ,发现其对BSA和Lys的吸附量分别为 4和 2 8mg/g,吸附行为满足Langmuir吸附等温式 ,且对时间依赖性小而对溶液离子强度敏感 .  相似文献   

6.
磁性Fe3O4微粒表面有机改性   总被引:23,自引:1,他引:23  
在分散聚合法制备复合磁性微球过程中,采用硅烷偶联剂KH 570对磁性Fe3O4微粒进行表面改性.红外光谱(FTIR)、光电子能谱(XPS)分析结果表明,偶联剂与磁性微粒表面以化学键形式结合.改性后,Fe3O4微粒与单体及其聚合物之间具有良好的亲和性,采用改性后的磁性微粒可以显著改善磁性微球的性能指标.  相似文献   

7.
亚微米级免疫磁球及其在细菌分离中的应用   总被引:1,自引:0,他引:1  
以亚微米级的单分散磁性微球为基础,制备出了表面包被有沙门氏菌抗体的免疫磁球. 利用表面电位、荧光和ELISA等方法研究了抗体在磁性微球表面的吸附行为. 在沙门氏菌磁分离实验中,通过调节投料抗体的浓度,研究了免疫磁球表面抗体浓度和磁分离效率的相关性,与微米级商品化免疫磁球的对比中,亚微米级的免疫磁球表现出了更高的磁分离效率.  相似文献   

8.
单一分散氧化铁-葡聚糖纳米粒子的制备及超顺磁性   总被引:5,自引:0,他引:5  
0引言 氧化铁-葡聚糖(Fe3O4-Dextran)复合粒子由于具有良好的生物相容性和优异的靶向性能,被用做药物、细胞、酶的载体广泛应用于生物医学、细胞学、生物工程和工业工程等领域[1~3].目前其制备方法主要有一步法和两步法.一步法中氧化铁是在葡聚糖体系下制备的,葡聚糖在氧化铁成核过程中能隔离和分散磁性粒子,防止磁性粒子的团聚和沉积[5].  相似文献   

9.
免疫磁性纳米微球的制备与表征   总被引:1,自引:0,他引:1  
王斌 《化学通报》2015,78(9):847-850
成功制备了Fe3O4磁性纳米颗粒及二甲基丙烯酸乙二醇酯-甲基丙烯酸(EGDMA-MAA)共聚物包覆的Fe3O4磁性复合微球。将吲哚美辛抗体固定在复合微球表面,形成了Fe3O4(核)/聚合物-抗体(壳)的复合免疫磁性颗粒。XRD结果表明,制备的Fe3O4的晶型为反立方尖晶石型且纯度较高;TEM表征表明Fe3O4粒径较为均匀,平均粒径为12nm;磁性复合微球的平均直径为460nm。制备的Fe3O4磁性纳米颗粒和磁性复合微球有较强的磁响应强度,其饱和磁化率分别为49.16和8.38emu/g,能够满足磁性分离的要求。FT IR验证了磁性复合微球中羧基特征峰的存在,表明羧基成功连接在磁性微球上面。通过碳二亚胺/N-羟基琥珀酰亚胺(EDC/NHS)活化法将微球表面羧基活化并成功与抗吲哚美辛抗体交联。  相似文献   

10.
生物高分子磁性微球作为性能优异的功能高分子材料在固定化酶、靶向药物、细胞分离和免疫分析等方面显示出强大的生命力。我们曾用凝胶-微乳液法化学剪裁技术制备了明胶包裹的复合磁性微粒,本文用共沉淀法制备磁性Fe3O4微晶作为磁性内核,明胶为包裹材料,  相似文献   

11.
以具有生物相容性的三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯为表面活性剂,利用多醇合成法制备了Fe3O4纳米微粒;采用X射线粉末衍射仪、傅立叶变换红外光谱仪及透射电子显微镜分析了Fe3O4纳米微粒的晶体结构、化学结构及显微结构,采用振动样品磁强计测定了其磁性能.结果表明,所制得的Fe3O4磁性纳米微粒结晶度高,在室温下显示近似超顺磁性.采用Langevin方程对Fe3O4纳米微粒的磁滞回线进行拟合,结果显示其为磁性单畴.此外,Fe3O4磁性纳米微粒在无机和有机溶剂中均具有很好的分散性,显示出广阔的应用前景.  相似文献   

12.
通过静电纺丝法制备出含有Fe3O4纳米微粒的TiO2纳米纤维,再采用浸渍还原法将Au纳米微粒嵌入到TiO2纳米纤维上,制备出一种具有较强磁性和良好可见光响应能力的复合光催化材料.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见固体漫反射光谱仪(UV-VisDRS)等对样品的结构和形貌进行表征,并以降解罗丹明B(RhB)为模型反应,考察了样品在可见光照射下的光催化性能.结果表明,嵌入Au纳米微粒可使复合纳米纤维在可见光下降解RhB时表现出非常好的降解速率和降解率;同时,将Fe3O4纳米微粒嵌入TiO2纳米纤维内部可以赋予材料较强的磁性,使材料便于分离和重复利用.  相似文献   

13.
采用表面引发原子转移自由基聚合方法合成了核壳结构的磁性高分子纳米微粒. 作为聚合反应引发剂的3-氯丙酸, 首先与油酸修饰的Fe3O4纳米微粒表面的部分油酸置换, 然后在Fe3O4纳米微粒表面引发甲基丙烯酸甲酯聚合, 合成的纳米复合材料用TEM, FTIR, XRD和DSC表征. 磁性测试结果表明, 所制备的磁性高分子纳米微粒仍具有超顺磁性, 但由于聚合物的存在, 其饱和磁化强度降低.  相似文献   

14.
细乳液聚合法制备磁性复合微球及其表征   总被引:16,自引:7,他引:16  
在制备超细Fe3O4 磁性粒子的基础上 ,以 3种低分子量聚合物Disperbyk 1 0 6、Disperbyk 1 0 8和Disperbyk 1 1 1为Fe3O4 微粒在单体相中的分散稳定剂 ,采用细乳液聚合法制备了平均粒径为 3 40nm的PS Fe3O4 磁性复合微球 .详细研究了分散剂种类对细乳液聚合制备磁性复合微球的影响 ,并采用XRD、TGA和TEM等手段对磁性复合微球的形态、结构及磁响应性等进行了表征 .实验结果证明分散剂的选择对磁性复合微球的成功制备起着至关重要的作用 ,兼具酸性和碱性功能基的分散剂Disperbyk 1 0 6具有更好的分散和稳定效果 .TEM结果表明 ,所制备的复合微球具有一些缺陷 ,而缺陷处往往是Fe3O4 磁性粒子聚集的地方  相似文献   

15.
Fe3O4纳米微粒是一种制备磁性液体的重要组成部分。但Fe3O4纳米微粒不稳定,极易氧化成γ-Fe2O3,其磁化强度也会明显降低[1-2]。铁氧体还易为酸溶解,化学反应式为:MFe2O4 8H M2 2Fe3 4H2O式中M为Fe、Co、Mn等二价金属。在Massart法制备酸性离子型磁性液体的方法中,采用了Fe(NO  相似文献   

16.
林立华  周群  卜胜利 《分析测试学报》2016,35(11):1481-1485
使用化学共沉淀法制备FeOOH/Ni(OH)_2前躯体,经FeCl_2溶液处理后得到表面包裹2FeCl_3·5H_2O层的γ-Fe_2O_3/Ni_2O_3复合磁性纳米微粒。分别制备了经不同浓度FeCl2溶液处理后的复合磁性纳米微粒,并通过振动样品磁强计(VSM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)和X射线光电子能谱仪(XPS)对样品的结构和磁性能进行分析。实验结果表明,微粒的磁性并不随FeCl_2处理液浓度的增加而单调变化。文中系统分析了FeCl_2溶液浓度对所制备微粒的磁化性质、形态及化学成分的影响。  相似文献   

17.
高灵敏度化学发光磁酶免疫法检测人绒毛膜促性腺激素   总被引:2,自引:2,他引:2  
将磁性微粒与抗体的偶联,通过优化偶联条件提高了偶联效率,制备了高灵敏度的磁微粒生物探针;采用3-(2-螺旋金刚烷)-4-甲氧基-4-(3-邻氧酰苯基)-1,2-二氧杂环丁烷(AMPPD)--碱性磷酸酶(ALP)化学发光体系,建立了化学发光磁酶免疫检测方法;对检测方法进行了优化和改进,提高了系统的灵敏度和检测速度,并对HCG样品进行相关检测.结果表明,HCG浓度在0.15~150 IU/L范围内,光强随HCG浓度增大而增加,两者之间线性关系良好,相关系数r为0.960;检出限可达0.15 IU/L; 相对标准偏差(RSD)小于5%; 检测总时间少于1 h.本方法可以应用于其它免疫分子的检测,在临床免疫检测方面具有广阔的应用前景.  相似文献   

18.
反相微乳液合成30~100nm磁性聚合物纳米微球   总被引:12,自引:0,他引:12  
利用反相微乳液一步法成功地制备了磁性聚合物纳米微球,微球粒径在30~100nm左右,均一性较好,研究表明,Fe(Ⅱ)浓度对微乳液和微胶乳的稳定性有很大影响,碱的种类、AOT和单体的含量能控制微球粒径,用振动探针式磁强仪(VSM)测定了不同比例的[Fe(Ⅱ)]/[Fe(Ⅲ)]所合成的聚合物微球的磁性,发现温度对合成高磁饱和强度和超顺磁性起关键作用,合成的磁性聚合物微胶乳透明且稳定性较好.  相似文献   

19.
掺铝铁饼状α-Fe2O3微粒的制备及性能   总被引:1,自引:0,他引:1  
曹付玲  吴育飞  刘辉  魏雨 《化学学报》2008,66(12):1405-1410
采用液相催化相转化法, 以Fe(III)与Al(III)的共沉淀为前驱物合成了铁饼状α-Fe2O3微粒, 探讨了各种因素如铝离子的掺杂浓度、反应温度以及催化剂Fe(II)离子用量等对合成铁饼状α-Fe2O3微粒的影响, 并对产物进行了X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电子衍射(ED)、X射线光电子能谱(XPS)等表征, 研究了样品的热稳定性及磁性能. 结果表明: 初始pH值为9, nFe(II)/nFe(III)≤0.04, nAl/nFe(III)=0.14、反应温度为100~140 ℃时, 可制备出铁饼状α-Fe2O3微粒. 尽管铝和铁均为三价且二者的氧化物均具有刚玉结构, 但因二者离子半径的差异而使α-Fe2O3晶胞参数因铝取代铁而减小, 其矫顽力和剩磁也因铝取代而发生变化. 电子衍射证明该方法合成的微粒为单晶粒子, 且具有较好的热稳定性.  相似文献   

20.
陈炜  于德梅  张晶  解云川 《化学学报》2009,67(11):1247-1251
采用沉淀法制备了Fe3O4纳米粒子, 以苯乙烯(St)、甲基丙烯酸缩水甘油酯(GMA)为聚合单体, 使用分散聚合法制备了P(St-GMA)/Fe3O4磁性聚合物微球. 分析了Fe3O4粒子的形貌和结构. 研究了制备条件对磁性聚合物微球磁含量的影响. 采用FTIR, XRD, TG及TEM等手段对磁性聚合物微球的微观结构及形貌、磁含量等进行了分析表征. 研究结果表明, 制备的磁性聚合物微球粒径均一, 磁含量高达74%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号