首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The exact solution of the equation of motion of a circular disk accelerated along its axis of symmetry due to an arbitrarily applied force in an otherwise still, incompressible, viscous fluid of infinite extent is obtained. The fluid resistance considered in this paper is the Stokes-flow drag which consists of the added mass effect, steady state drag, and the effect of the history of the motion. The solutions for the velocity and displacement of the circular disk are presented in explicit forms for the cases of constant and impulsive forcing functions. The importance of the effect of the history of the motion is discussed.Nomenclature a radius of the circular disk - b one half of the thickness of the circular disk - C dimensionless form of C 1 - C 1 magnitude of the constant force - D fluid drag force - f(t) externally applied force - F() dimensionaless form of applied force - F 0 initial value of F - g gravitational acceleration - H() Heaviside step function - k magnitude of impulsive force - K dimensionless form of k - M a dimensionless parameter equals to (1+37#x03C0;s/4f) - S displacement of disk - t time - t 1 time of application of impulsive force - u velocity of the disk - V dimensionless velocity - V 0 initial velocity of V - V t terminal velocity - parameter in (13) - parameter in (13) - (t) Dirac delta function - ratio of b/a - () function given in (5) - dynamical viscosity of the fluid - kinematic viscosity of the fluid - f fluid density - s mass density of the circular disk - dimensionless time - i dimensionless form of t i - dummy variable - dummy variable  相似文献   

2.
The linear stability theory is used to study stability characteristics of laminar condensate film flow down an arbitrarily inclined wall. A critical Reynolds number exists above which disturbances will be amplified. The magnitude of the critical Reynolds number is in all practical situations so small that a laminar gravity-induced condensate film can be expected to be unstable. Several stabilizing effects are acting on the film flow; at an inclined wall these effects are due to surface tension, gravity and condensation mass transfer.
Zusammenfassung Mit Hilfe der linearen Stabilitätstheorie werden die Stabilitätseigenschaften laminarer Kondensatfilme an einer geneigten Wand untersucht. Es zeigt sich, daß Kondensatfilme in jedem praktischen Fall ein unstabiles Verhalten aufweisen. Der stabilisierende Einfluß von Oberflächenspannung, Schwerkraft und Stoffübertragung durch Kondensation bewkkt jedoch, daß Störungen in bestimmten Wellenlängenbereichen gedämpft werden.

Nomenclature c=c*/u0 complex wave velocity, celerity, dimensionless - c*=c r * + i c i * complex wave velocity, celerity, dimensional - cp specific heat at constant pressure - g gravitational acceleration - hfg latent heat - k thermal conductivity of liquid - p* pressure - p=p*/u0 2 dimensionless pressure - Pe=Pr Re* Peclet number - Pr Prandtl number - Re*=u0 / Reynolds number (defined with surface velocity) - S temperature perturbation amplitude - t* time - t=t* u0/ dimensionless time - T temperature - Ts saturation temperature - Tw wall temperature - T=Ts-Tw temperature drop across liquid film - u*, v* velocity components - u=u*/u0 dimensionless velocity components - v=v*/u0 dimensionless velocity components - u0 surface velocity of undisturbed film flow - v g * vapor velocity - x*, y* coordinates - x=x*/ dimensionless coordinates - y=y*/ dimensionless coordinates Greek Symbols =* wave number, dimensionless - *=2 /* wave number dimensional - * wave length, dimensional - =*/ wave length, dimensionless - local thickness of undisturbed condensate film - kinematic viscosity, liquid - density, liquid - g density vapor - surface tension - = (1 +) film thickness of disturbed film, Fig. 1 - stream function perturbation amplitude - angle of inclination Base flow quantities are denoted by, disturbance quantities are denoted by.  相似文献   

3.
The results of the hydraulic studies of gas-liquid media, wave processes in two-phase media and critical phenomena are described. Some methodological foundations to describe these media and methods to obtain the basic similarity criteria for the hydraulics and gas-dynamics of bubble suspensions are discussed. A detailed consideration is given for the phase transition processes on interfaces and the interface stability. A relation has been revealed between the wave and critical phenomena in two-phase systems.Nomenclature a thermal diffusivity - Ar Archimedes number - B gas constant - C heat capacity - C p heat capacity at constant pressure - C v heat capacity at constant volume - c 0 acoustic velocity in the mixture - c l acoustic velocity in the liquid - C f flow resistance coefficient - G mass rate of flow - g gravitational acceleration - L latent heat of evaporation - l initial perturbation width - M Mach number - Nu Nusselt number - P pressure - Pr Prandtl number - R bubble radius - (3P 0/R 0 2 f )–1 bubble resonance frequency square - T temperature - U medium motion velocity - W heavy phase velocity - W light phase velocity - We Weber number - heat release coefficient - dispersion coefficient - void fraction - adiabatic index - film thickness - dimensionless film thickness - kinematic viscosity coefficient - dynamical viscosity coefficient - dissipation coefficient in the mixture - dispersion parameter - f liquid phase density - light phase density - heat conductivity - surface tension - frequency, 0 2 =3P 0/ f R 0 2  相似文献   

4.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

5.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

6.
In this investigation some hydrodynamic characteristics of two phase, two component, air water bubbly flow in a vertical annulus were studied. In particular, the void fraction profiles, and the pressure fluctuations were measured by the electrical resistivity probe and a capacitive type differential transducer respectively. These measurements were assessed under various system parameters, viz the air and water flux, the perforation ratio (Area of holes/channel cross sectional area) and the dimensionless axial distance. In addition, the pressure drop calculated from the void fraction measurements was in very good agreement with the corresponding one measured by the pressure transducers.List of symbols D eq equivalent diameter of the annular channel (m) - j flux (discharge/channel cross sectional area) (m/s) - m mass flow rate (kg/s) - P pressure (Pa) - AP static pressure difference along the test section (Pa) - P pressure fluctuations (Pa) - P * dimensionless pressure (P m/P S.P. ) - P dimensionless pressure fluctuations (P max /P T.P. ) - r radius (m) - z axial distance (m) Greek symbols void fraction - dimensionless axial distance (Z/Dimeq) - perforation ratio (area of holes/channel cross sectional area) - density (kg/m3) - time (s) - dimensionless radial distance (r–r i )/(r o-r i ) Suffix g gas - i inner - L liquid - m mean - Max Maximum - O outer - S.P. single-phase - T.P. two-phase  相似文献   

7.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

8.
In this paper, the derivation of macroscopic transport equations for this cases of simultaneous heat and water, chemical and water or electrical and water fluxes in porous media is presented. Based on themicro-macro passage using the method of homogenization of periodic structures, it is shown that the resulting macroscopic equations reveal zero-valued cross-coupling effects for the case of heat and water transport as well as chemical and water transport. In the case of electrical and water transport, a nonsymmetrical coupling was found.Notations b mobility - c concentration of a chemical - D rate of deformation tensor - D molecular diffusion coefficient - D ij eff macroscopic (or effective) diffusion tensor - electric field - E 0 initial electric field - k ij molecular tensor - j, j *, current densities - K ij macroscopic permeability tensor - l characteristic length of the ERV or the periodic cell - L characteristic macroscopic length - L ijkl coupled flows coefficients - n i unit outward vector normal to - p pressure - q t ,q t + , heat fluxes - q c ,q c + , chemical fluxes - s specific entropy or the entropy density - S entropy per unit volume - t time variable - t ij local tensor - T absolute temperature - v i velocity - V 0 initial electric potential - V electric potential - x macroscopic (or slow) space variable - y microscopic (or fast) space variable - i local vectorial field - i local vectorial field - electric charge density on the solid surface - , bulk and shear viscosities of the fluid - ij local tensor - ij local tensor - i local vector - ij molecular conductivity tensor - ij eff effective conductivity tensor - homogenization parameter - fluid density - 0 ion-conductivity of fluid - ij dielectric tensor - i 1 , i 2 , i 3 local vectors - 4 local scalar - S solid volume in the periodic cell - L volume of pores in the periodic cell - boundary between S and L - s rate of entropy production per unit volume - total volume of the periodic cell - l volume of pores in the cell On leave from the Politechnika Gdanska; ul. Majakowskiego 11/12, 80-952, Gdask, Poland.  相似文献   

9.
The results of a numerical study (using finite differences) of heat transfer in polymer melt flow is presented. The rheological behaviour of the melt is described by a temperature-dependent power-law model. The curved tube wall is assumed to be at constant temperature. Convective and viscous dissipation terms are included in the energy equation. Velocity, temperature and viscosity profiles, Nusselt numbers, bulk temperatures, etc. are presented for a variety of flow conditions. Br — Brinkman number - c specific heat, J/kg K - De — Dean number - E dimensionless apparent viscosity, eq. (14d) - G dimensionless shear rate, eq. (19) - k parameter of the power-law model, °C–1, eq. (7) - mass flow rate, kg/s - m 0 parameter of the power-law model, Pa · s n , eq. (7) - n parameter of the power-law model, eq. (7) - Nu 2r p/ — Nusselt number, eqs. (28,31) - p pressure, Pa - Pe — Péclet number - P(p/)/r c — pressure gradient, Pa/m - dissipated energy, W, eq. (29) - total energy, W, eq. (30) - r radial coordinate, m - r c radius of tube-curvature, m, fig. 1 - r p radius of tube, m, fig. 1 - r t variable, m, eq. (6) - R dimensionless radial coordinate, eq. (14a) - R c dimensionlessr c, eq. (14a) - R t dimensionlessr t, eq. (14a) - t temperature, °C - bulk temperature, °C, eq. (27) - t 0 inlet temperature of the melt, °C - t w tube wall temperature, °C - T dimensionless temperature, eq. (14c) - T w dimensionless tube wall temperature - T dimensionless bulk temperature - u 1 variable, s–1, eq. (4) - u 2 variable, s–1, eq. (5) - U 1 dimensionlessu 1, eq. (18) - U 2 dimensionlessu 2, eq. (18) - v velocity in-direction, m/s - average velocity of the melt, m/s - V dimensionlessv, eq. (14b) - dimensionless , eq. (15) - z r c — centre length of the tube, m - Z dimensionlessz, eq. (14e) - heat transfer coefficient, W/m2 K - shear rate, s–1, eq. (8) - — shear rate, s–1 - apparent viscosity, Pa · s, eq. (7) - 0 — apparent viscosity, Pa · s - angular coordinate, rad, fig. 1 - thermal conductivity, W/m K - melt density, kg/m3 - axial coordinate, rad, fig. 1 - rate of strain tensor, s–1, eq. (8) - (—p) pressure drop, Pa  相似文献   

10.
The paper presents an exact analysis of the dispersion of a passive contaminant in a viscous fluid flowing in a parallel plate channel driven by a uniform pressure gradient. The channel rotates about an axis perpendicular to its walls with a uniform angular velocity resulting in a secondary flow. Using a generalized dispersion model which is valid for all time, we evaluate the longitudinal dispersion coefficientsK i (i=1, 2, ...) as functions of time. It is shown thatK 1=0 andK 3,K 4, ... decay rapidly in comparison withK 2. ButK 2 decreases with increasing (the dimensionless rotation parameter) for values of upto approximately =2.2. ThereafterK 2 increases with further increase in and its value gets saturated for large values of (say, 500) and does not change any further with increase in . A physical explanation of this anomalous behaviour ofK 2 is given.
Instationäre konvektive Diffusion in einem rotierenden Parallelplattenkanal
Zusammenfassung In dieser Untersuchung wird eine exakte Analyse der Ausbreitung eines passiven Kontaminierungsstoffes in einer zähen Flüssigkeit gegeben, die, befördert durch einen gleichförmigen Druckgradienten, in einem Parallelplattenkanal strömt. Der Kanal rotiert mit gleichförmiger Winkelgeschwindigkeit um eine zu seinen Wänden senkrechte Achse, wodurch sich eine Sekundärströmung ausbildet. Unter Verwendung eines generalisierten, für alle Zeiten gültigen Dispersionsmodells werden die longitudinalen DispersionskoeffizientenK i (i=1, 2, ...) als Funktionen der Zeit ermittelt. Es wird gezeigt, daßK 1=0 gilt und dieK 3,K 4, ... gegenüberK 2 schnell abnehmen.K 2 nimmt ab, wenn , der dimensionslose Rotationsparameter, bis etwa zum Wert 2,2 ansteigt. Danach wächstK 2 mit bis auf einem Endwert an, der etwa ab =500 erreicht wird. Dieses anomale Verhalten vonK 2 findet eine physikalische Erklärung.

List of symbols C solute concentration - D molecular diffusivity - K i longitudinal dispersion coefficients - 2L depth of the channel - P 0 dimensionless pressure gradient along main flow - Pe Péclet number - q velocity vector - Q x,Q y mass flux along the main flow and the secondary flow directions - dimensionless average velocity along the main flow direction - (x, y, z) Cartesian co-ordinates Greek symbols dimensionless rotation parameter - the inclination of side walls withx-axis - kinematic viscosity - fluid density - dimensionless time - angular velocity of the channel - dimensionless distance along the main flow direction - dimensionless distance along the vertical direction - dimensionless solute concentration - integral of the dispersion coefficientK 2() over a time interval  相似文献   

11.
An experimental investigation of a starting vortex flow around a backward-facing step was conducted in a water channel. The properties and structures of the flow were investigated by qualitative flow visualization using the hydrogen bubble method and by quantitative velocity and vorticity measurements using White-light Bubble Image Velocimetry (WBIV) — a newly developed PIV method. Some invariant properties and 4-stage structures of starting vortex flow were observed.List of symbols a flow acceleration during starting stage - h height of backward-facing step - d v dimensionless vortex size - t time - t dimensionless time - U free uniform velocity - u, v streamwise and spanwise velocity components respectively - Re Reynolds number based on a and h - x, y streamwise and spanwise coordinates respectively in flow field - x c , y c dimensionless vortex center position - vorticity - ov dimensionless vorticity - max maximum vorticity - ov max dimensionless maximum vorticity - circulation - dimensionless circulation - kinematic viscosity This work was supported by the CNSF Grant 1939 100-1-3  相似文献   

12.
An analytical model was developed for describing the performance of packed-bed enzymic reactors operating with two cosubstrates, and when one of the reaction products is inhibitory to the enzyme. To this aim, the compartmental analysis technique was used. The relevant equations obtained were solved numerically, and the effect of the main operational parameters on the reactor characteristics were studied.Notation C infa,i sup* local concentration of products in the pores of stage i - C j,i concentration of substrate j in the pores of stage i - D infa sup* internal (pore) diffusion coefficient for the reaction product a - D j internal (pore) diffusion coefficient of substrate j - J infa,i sup* net flux of product a, taking place from the pores of stage i into the corresponding bulk phase - J j,i net flux of substrate j, taking place from the bulk phase of stage i into the corresponding pores - K b inhibition constant - K m,1, K m,2 Michaelis constants for substrate 1 and 2, respectively - K q inhibition constant - n total number of elementary stages in the reactor - Q volumetric flow rate throughout the reactor - R j,i, R infa,i sup* local reaction rates in pores of stage i, in terms of concentration of substrate j and product a respectively - S infa,i sup* , S infa,i-1 sup* bulk concentration of the reaction product a, in the stages i and i — 1, respectively - S j,0 concentration of substrate j in the reactor feed - S j,i-1, S j,i concentration of substrate j in the bulk phase leaving stages i — 1 and i, respectively - V total volume of the reactor - V m maximal reaction rate in terms of volumetric units - y axial coordinate of the pores - y 0 depth of the pores - * dimensionless parameter, defined in Equation (22) - 1 dimensionless parameter, defined in Equation (6) - 2 dimensionless parameter, defined in Equation (6) - 1 dimensionless parameter, defined in Equation (6) - 2 dimensionless parameter, defined in Equation (6) - * dimensionless parameter, defined in Equation (22) - 1 dimensionless parameter, defined in Equation (6) - 2 dimensionless parameter, defined in Equation (6) - * dimensionless parameter, defined in Equation (22) - * dimensionless parameter, defined in Equation (22) - volumetric packing density of catalytic particles (dimensionless) - porosity of the catalytic particles (dimensionless) - V infi sup* dimensionless concentration of reaction product in pores of stage i, defined in Equation (17) - j,i dimensionless concentration of substrate j in pores of stage i; defined in Equation (6) - j,i-1, j.i dimensionless concentration of substrate j in the bulk phase of stage i; defined in Equation (6) - dimensionless position along the pore; defined in Equation (6)  相似文献   

13.
Summary A study is made of the attenuation of pressure surges in a two-dimension a channel carrying a viscous liquid when a valve at the downstream end is suddenly closed. The analysis differs from previous work in this area by taking into account the transient nature of the wall shear, which in the past has been assumed as equivalent to that existing in steady flow. For large values of the frictional resistance parameter the transient wall shear analysis results in less attenuation than given by the steady wall shear assumption.Nomenclature c /, ft/sec - e base of natural logarithms - F(x, y) integration function, equation (38) - (x) mean value of F(x, y) - g local acceleration of gravity, ft/sec2 - h width of conduit, ft - k (2m–1)2 2 L/h 2 c, equation (35) - k* 12L/h 2 c, frictional resistance parameter, equation (46) - L length of conduit, ft - m positive integer - n positive integer - p pressure, lb/ft2 - p 0 constant pressure at inlet of conduit, lb/ft2 - P pressure plus elevation head, p+gz, equation (4) - mean value of P over the conduit width h - P 0 p 0+gz 0, lbs/ft2 - R frictional resistance coefficient for steady state wall shear, lb sec/ft4 - s positive integer; also, condensation, equation (6) - t time, sec - t ct/L, dimensionless time - u x component of fluid velocity, ft/sec - u m mean velocity in conduit, equation (12), ft/sec - u 0(y) velocity profile in Poiseuille flow, equation (19), ft/sec - transformed velocity - U initial mean velocity in conduit - x distance along conduit, measured from valve (fig. 1), ft - x x/L, dimensionless distance - y distance normal to conduit wall (fig. 1), ft - y y/h, equation (25) - z elevation, measured from arbitrary datum, ft - z 0 elevation of constant pressure source, ft - isothermal bulk compression modulus, lbs/ft2 - n , equation (37) - n (2n–1)/2, equation (36) - viscosity, slugs/ft sec - / = kinematic viscosity, ft2/sec - density of fluid, slugs/ft3 - 0 density of undisturbed fluid, slugs/ft3 - ø angle between conduit and vertical (fig. 1) The research upon which this paper is based was supported by a grant from the National Science Foundation.  相似文献   

14.
Summary TheCross equation describes the flow of pseudoplastic liquids in terms of an upper and a lower Newtonian viscosity corresponding to infinite and zero shear, and 0, and of a third material constant related to the mechanism of rupture of linkages between particles in the intermediate, non-Newtonian flow regime, Calculation of of bulk polymers is important, since it cannot be determined experimentally. The equation was applied to the melt flow data of two low density polyethylenes at three temperatures.Using data in the non-Newtonian region covering 3 decades of shear rate to extrapolate to the zero-shear viscosity resulted in errors amounting to about onethird of the measured 0 values. The extrapolated upper Newtonian viscosity was found to be independent of temperature within the precision of the data, indicating that it has a small activation energy.The 0 values were from 100 to 1,400 times larger than the values at the corresponding temperatures.The values of were large compared to the values found for colloidal dispersions and polymer solutions, but decreased with increasing temperature. This shows that shear is the main factor in reducing chain entanglements, but that the contribution of Brownian motion becomes greater at higher temperatures.
Zusammenfassung Die Gleichung vonCross beschreibt das Fließverhalten von pseudoplastischen Flüssigkeiten durch drei Konstante: Die obereNewtonsche Viskosität (bei sehr hohen Schergeschwindigkeiten), die untereNewtonsche Viskosität 0 (bei Scherspannung Null), und eine Materialkonstante, die vom Brechen der Bindungen zwischen Partikeln im nicht-Newtonschen Fließbereich abhängt. Die Berechnung von ist wichtig für unverdünnte Polymere, wo man sie nicht messen kann.Die Gleichung wurde auf das Fließverhalten der Schmelzen von zwei handelsüblichen Hochdruckpolyäthylenen bei drei Temperaturen angewandt. Die Werte von 0, durch Extrapolation von gemessenen scheinbaren Viskositäten im Schergeschwindigkeitsbereich von 10 bis 4000 sec–1 errechnet, wichen bis 30% von den gemessenen 0-Werten ab. Die Aktivierungsenergie der war so klein, daß die-Werte bei den drei Temperaturen innerhalb der Genauigkeit der Extrapolation anscheinend gleich waren. Die 0-Werte waren 100 bis 1400 mal größer als die-Werte.Im Verhältnis zu kolloidalen Dispersionen und verdünnten Polymerlösungen war das der Schmelzen groß, nahm aber mit steigender Temperatur ab. Deshalb wird die Verhakung der Molekülketten hauptsächlich durch Scherbeanspruchung vermindert, aber der Beitrag derBrownschen Bewegung nimmt mit steigender Temperatur zu.
  相似文献   

15.
Summary Transient stresses including normal stresses, which are developed in a polymer melt by a suddenly imposed constant rate of shear, are investigated by mechanical measurement and, indirectly, with the aid of the flow birefringence technique. For the latter purpose use is made of the so-called stress-optical law, which is carefully checked.It appears that the essentially linear model of the rubberlike liquid, as proposed byLodge, is capable of describing the behaviour of polymer melts rather well, if the applied total shear does not exceed unity. In order to describe also steady state values of the stresses successfully, one should extend measurements to extremely low shear rates.These statements are verified with the aid of a method which was originally designed bySchwarzl andStruik for the practical calculation of interrelations between linear viscoelastic functions. In the present paper dynamic shear moduli are used as reference functions.
Zusammenfassung Mit der Zeit anwachsende Spannungen, darunter auch Normalspannungen, wie sie sich nach dem plötzlichen Anlegen einer konstanten Schergeschwindigkeit in einer Polymerschmelze entwickeln, werden mit Hilfe mechanischer Messungen und indirekt mit Hilfe der Strömungsdoppelbrechung untersucht. Für den letzteren Zweck wird das sogenannte spannungsoptische Gesetz herangezogen, dessen Gültigkeit sorgfältig überprüft wird.Es ergibt sich, daß das im Wesen lineare Modell der gummiartigen Flüssigkeit, wie es vonLodge vorgeschlagen wurde, sich recht gut zur Beschreibung des Verhaltens von Polymerschmelzen eignet, solange der im ganzen angelegte Schub den Wert Eins nicht überschreitet. Um auch stationäre Werte der Spannungen in die Beschreibung erfolgreich einzubeziehen, sollte man die Messungen bis zu extrem niedrigen Schergeschwindigkeiten ausdehnen.Die gemachten Feststellungen werden mit Hilfe einer Methode verifiziert, die vonSchwarzl undStruik ursprünglich für die praktische Berechnung von Beziehungen zwischen Zustandsfunktionen entwickelt wurde, die dem linear viskoelastischen Verhalten entsprechen. In der vorliegenden Veröffentlichung dienen die dynamischen Schubmoduln als Bezugsfunktionen.

a T shift factor - B ij Finger deformation tensor - C stress-optical coefficient, (m2/N) - f (p jl ) undetermined scalar function - G shear modulus, (N/m2) - G(t) time dependent shear modulus, (N/m2) - G() shear storage modulus, (N/m2) - G() shear loss modulus, (N/m2) - G r reduced shear storage modulus, (N/m2) - G r reduced shear loss modulus, (N/m2) - H() shear relaxation time spectrum, (N/m2) - k Boltzmann constant, (Nm/°K) - n ik refractive index tensor - p undetermined hydrostatic pressure, (N/m2) - p ij ,p ik stress tensor, (N/m2) - p 21 shear stress, (N/m2) - p 11p 22 first normal stress difference, (N/m2) - p 22p 33 second normal stress difference, (N/m2) - q shear rate, (s–1) - t, t time, (s) - T absolute temperature, (°K) - T 0 reference temperature, (°K) - x the ratiot/ - x position vector of a material point after deformation, (m) - x position vector of a material point before deformation, (m) - 0, 1 constants in eq. [37] - 0, 1 constants in eq. [37] - shear deformation - (t, t) time dependent shear deformation - ij unity tensor - n flow birefringence in the 1–2 plane - (q) non-Newtonian shear viscosity, (N s/m2) - * () complex dynamic viscosity, (N s/m2) - | * ()| absolute value of complex dynamic viscosity, (N s/m2) - () real part of complex dynamic viscosity, (N s/m2) - () imaginary part of complex dynamic viscosity, (N s/m2) - (t — t) memory function, (N/m2 · s) - v number of effective chains per unit of volume, (m–3) - temperature dependent density, (kg/m3) - 0 density at reference temperatureT 0, (kg/m3) - relaxation time, (s) - integration variable, (s) - (x) approximate intensity function - 1 (x) error function - extinction angle - m orientation angle of the stress ellipsoid - circular frequency, (s–1) - 1 direction of flow - 2 direction of the velocity gradient - 3 indifferent direction - t time dependence The present investigation has been carried out under the auspices of the Netherlands Organization for the Advancement of Pure Research (Z. W. O.).North Atlantic Treaty Organization Science Post Doctoral Fellow.Research Fellow, Delft University of Technology.With 11 figures and 2 tables  相似文献   

16.
The paper reports the outcome of a numerical study of fully developed flow through a plane channel composed of ribleted surfaces adopting a two-equation turbulence model to describe turbulent mixing. Three families of riblets have been examined: idealized blade-type, V-groove and a novel U-form that, according to computations, achieves a superior performance to that of the commercial V-groove configuration. The maximum drag reduction attained for any particular geometry is broadly in accord with experiment though this optimum occurs for considerably larger riblet heights than measurements indicate. Further explorations bring out a substantial sensitivity in the level of drag reduction to the channel Reynolds number below values of 15 000 as well as to the thickness of the blade riblet. The latter is in accord with the trends of very recent, independent experimental studies.Possible shortcomings in the model of turbulence are discussed particularly with reference to the absence of any turbulence-driven secondary motions when an isotropic turbulent viscosity is adopted. For illustration, results are obtained for the case where a stress transport turbulence model is adopted above the riblet crests, an elaboration that leads to the formation of a plausible secondary motion sweeping high momentum fluid towards the wall close to the riblet and thereby raising momentum transport.Nomenclature c f Skin friction coefficient - c f Skin friction coefficient in smooth channel at the same Reynolds number - k Turbulent kinetic energy - K + k/ w - h Riblet height - S Riblet width - H Half height of channel - Re Reynolds number = volume flow/unit width/ - Modified turbulent Reynolds number - R t turbulent Reynolds numberk 2/ - P k Shear production rate ofk, t (U i /x j + U j /x i ) U i /x j - dP/dz Streamwise static pressure gradient - U i Mean velocity vector (tensor notation) - U Friction velocity, w/ where w=–H dP/dz - W Mean velocity - W b Bulk mean velocity through channel - y + yU /v. Unless otherwise stated, origin is at wall on trough plane of symmetry - Kinematic viscosity - t Turbulent kinematic viscosity - Turbulence energy dissipation rate - Modified dissipation rate – 2(k 1/2/x j )2 - Density - k , Effective turbulent Prandtl numbers for diffusion ofk and   相似文献   

17.
A deterministic stochastic approach is successfully applied to the investigation of some problems of the fluid-dynamics of two-phase systems. The method follows the guidelines of the theory of differential equations with random initial conditions.Dusty gas flows and bubble flows are considered in circumstances where the action of the particulate matter on the fluid flow field is negligible. In all the cases, collisions between particles of the disperse phase are neglected. As significant applications, the entrance flow of dust particles in a tube and the behaviour of a population of bubbles imbedded in a pipe-flow subject to an abrupt area, change are considered. The probable distributions of the particles are evaluated as functions of assigned statistical distributions of the objects at the initial time.
Analytische Ergebnisse von Zweiphasen-Strömungen in Kanälen
Zusammenfassung Ein deterministisch-stochastischer Ansatz wird erfolgreich auf die Untersuchung einiger Strömungsprobleme von Zweiphasensystemen angewandt. Die Methode entspricht der Theorie von Differential-gleichungen mit zufälligen Anfangsproblemen.Staub-Gas-Strömungen und Blasen-Strömungen werden unter Bedingungen behandelt, bei denen der Einfluß des betreffenden Stoffes auf das Strömungsfeld vernachlässigt werden kann. In allen Fällen werden auch Kollisionen zwischen Partikeln der dispersen Phase vernachlässigt. Als kennzeichnende Anwendungen werden die Eintrittsströmungen von Staub in ein Rohr und das Verhalten eines Blasenschwarmes an einer sprunghaften Querschnittsveränderung eines Rohres behandelt. Die wahrscheinlichen Teilchenverteilungen werden als Funktionen bestimmter Anfangsverteilungen ermittelt.

Nomenclature A normalization factor - A,b,c,kj,G,, dimensionless quantities defined in the text - h a/c - H w/a - J operator defined at page 2 - K Boltzmann constant - p dimensionless pressure - P probability density - p probability - r+ radius of the tube, reference length - R radial co-ordinate (dimensionless) - Re Reynolds number of the relative motion of the particles with respect to the fluid - t+ reference time, r+ /U+ - t time (dimensionless) - U+ reference velocity - Ua,Ur axial and radial velocity components, respectively, of the fluid flow - 183-01 state vector of a particle - Va,Vr axial and radial velocity components respectively of a particle - Z dimensionless axial co-ordinate along the tube - viscosity - mass density - diameter of a particle, dimensionless with respect to r+ Indexes ()a air - ()c coal - ()t at the time t - ()w water - ()o at the time t=o  相似文献   

18.
A mixed convection parameter=(Ra) 1/4/(Re)1/2, with=Pr/(1+Pr) and=Pr/(1 +Pr)1/2, is proposed to replace the conventional Richardson number, Gr/Re2, for combined forced and free convection flow on an isothermal vertical plate. This parameter can readily be reduced to the controlling parameters for the relative importance of the forced and the free convection,Ra 1/4/(Re 1/2 Pr 1/3) forPr 1, and (RaPr)1/2/(RePr 1/2 forPr 1. Furthermore, new coordinates and dependent variables are properly defined in terms of, so that the transformed nonsimilar boundary-layer equations give numerical solutions that are uniformly valid over the entire range of mixed convection intensity from forced convection limit to free convection limit for fluids of any Prandtl number from 0.001 to 10,000. The effects of mixed convection intensity and the Prandtl number on the velocity profiles, the temperature profiles, the wall friction, and the heat transfer rate are illustrated for both cases of buoyancy assisting and opposing flow conditions.
Mischkonvektion an einer vertikalen Platte für Fluide beliebiger Prandtl-Zahl
Zusammenfassung Für die kombinierte Zwangs- und freie Konvektion an einer isothermen senkrechten Platte wird ein Mischkonvektions-Parameter=( Ra) 1/4 (Re)1/2, mit=Pr/(1 +Pr) und=Pr/(1 +Pr)1/2 vorgeschlagen, den die gebräuchliche Richardson-Zahl, Gr/Re2, ersetzen soll. Dieser Parameter kann ohne weiteres auf die maßgebenden Kennzahlen für den relativen Einfluß der erzwungenen und der freien Konvektion reduziert werden,Ra 1/4/(Re 1/2 Pr 1/3) fürPr 1 und (RaPr)1/4/(RePr)1/2 fürPr 1. Weiterhin werden neue Koordinaten und abhängige Variablen als Funktion von definiert, so daß für die transformierten Grenzschichtgleichungen numerische Lösungen erstellt werden können, die über den gesamten Bereich der Mischkonvektion, von der freien Konvektion bis zur Zwangskonvektion, für Fluide jeglicher Prandtl-Zahl von 0.001 bis 10.000 gleichmäßig gültig sind. Der Einfluß der Intensität der Mischkonvektion und der Prandtl-Zahl auf die Geschwindigkeitsprofile, die Temperaturprofile, die Wandreibung und den Wärmeübergangskoeffizienten werden für die beiden Fälle der Strömung in und entgegengesetzt zur Schwerkraftrichtung dargestellt.

Nomenclature C f local friction coefficient - C p specific heat capacity - f reduced stream function - g gravitational acceleration - Gr local Grashoff number,g T w –T )x3/v2 - Nu local Nusselt number - Pr Prandtl number,v/ - Ra local Rayleigh number,g T w –T x 3/( v) - Re local Reynolds number,u x/v - Ri Richardson number,Gr/Re 2 - T fluid temperature - T w wall temperature - T free stream temperature - u velocity component in thex direction - u free stream velocity - v velocity component in they direction - x vertical coordinate measuring from the leading edge - y horizontal coordinate Greek symbols thermal diffusivity - thermal expansion coefficient - mixed convection parameter (Ra)1/4/Re)1/2 - pseudo-similarity variable,(y/x) - 0 conventional similarity variable,(y/x)Re 1/2 - dimensionless temperature, (T–T T W –T - unified mixed-flow parameter, [(Re) 1/2 + (Ra)1/4] - dynamic viscosity - kinematic viscosity - stretched streamwise coordinate or mixed convection parameter, [1 + (Re)1/2/(Ra) 1/4]–1=/(1 +) - density - Pr/(1 + Pr) w wall shear stress - stream function - Pr/(l+Pr)1/3 This research was supported by a grand from the National Science Council of ROC  相似文献   

19.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

20.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号