首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resonant Raman scattering (RRS) spectra of individual carbon nanotubes on a SiO2 substrate have been investigated first in the temperature range of 100-600 K (Phys. Rev. B 2002, 66, 115411). It was revealed by the intensity abnormality of the radial breathing mode (RBM) that the carbon nanotubes have a temperature-dependent density of electronic states. This means that the previously reported temperature coefficients of RBM of carbon nanotubes are smaller than their "real" ones for the bulk samples of single- or double-walled carbon nanotubes. Comparatively, the G line of individual nanotubes shows no observable difference relative to the bulk samples.  相似文献   

2.
We report the infrared (IR) response of bulk samples of multiwalled boron nitride nanotubes, produced by a substitution reaction from single walled carbon nanotubes, which is dominated by two characteristic BN-vibrations at 800 and 1372 cm-1.  相似文献   

3.
The process of rolling a monolayer of bulk crystal with biperiodical planar lattice to the nanotube was analyzed. It was shown by an example of the carbon nanotubes how the tube symmetry can be revealed through the analysis of symmetry of graphene layers (the layer group with a hexagonal planar lattice) and its changes at the rolling to form the tube. The developed approach can be used to analyze the symmetry of any nanotube. A computer program we developed is discussed that allows to determine the nanotube symmetry using the data on the symmetry and coordinates of the atoms in the nanolayer and get the coordinates of the atoms in the unit cell of the nanotube which can be used for the further quantum-chemical calculations. The method and results of ab initio calculations of the titanium dioxide monolayer stability in the LCAO basis optimized for the bulk crystal, using the hybrid exchange-correlation potential PBE0 are presented. Symmetry properties of nanotubes obtained by rolling the three- and six-plane monolayers (101) and (001) of anatase are discussed. Atomic and electronic structure of TiO2 nanotubes found by geometry optimization is analyzed. It is shown that titanium dioxide nanotubes based on the three-plane monolayers with hexagonal and square lattice are approximately of the same stability. The data on the stability of nanotubes are essential for the synthesis of new nanomaterials based on titanium dioxide.  相似文献   

4.
Chen G  Xu C  Song X  Zhao W  Ding Y  Sun S 《Inorganic chemistry》2008,47(2):723-728
CeO(2) nanotubes have been synthesized with a simple solid-liquid interface reaction route in the absence of any surfactants. Although the basic reaction principles are similar, two kinds of nanotubes with completely different morphologies and structures can be generated by slightly tuning the postprocessing conditions. The first formation involves employing Ce(OH)CO(3) nanorods as both the physical and chemical templates, and the other requires layered Ce(OH)3 as an anisotropic intermediate species. During this process, NaOH and reaction temperature were demonstrated as the key factors responsible for the formation of Ce(OH)(3) intermediate and final CeO(2) nanotubes with well-defined structures. The structural details were provided by a combination of XRD, SEM, TEM, and HRTEM investigations. Catalytic measurement shows that both nanotubes are very active for CO oxidation, and at 250 degrees C, the conversion rates of CeO(2) nanotubes are 3 times higher than that of the bulk counterpart.  相似文献   

5.
High resolution 13C nuclear magnetic resonance was employed to study the phase behavior of the amphiphilic long-chain palmitic acid (PA) confined inside the cylindrical nanopores in the matrix of titanate nanotubes. For a series of mixtures of titanate nanotubes and palmitic acid at various mass ratios, it was shown that annealing at the bulk melting temperature (approximately 335.5 K) of PA induced fast chemisorption of PA on the nanotube surface followed by slow physical trapping of PA into the cylindrical nanopore. It was found that the trapped PA remained solidlike substantially above the bulk melting temperature. Contrary to the bulk neat PA, for the trapped PA, the isotropic molecular-chain reorientation was shown to remain arrested even above the bulk melting temperature. When destabilized at approximately 349 K, the trapped PA deserted the nanopore and formed bulk PA, which could be retrapped into the nanopore upon annealing at the bulk melting temperature. The entire process was shown as reversible.  相似文献   

6.
In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results.  相似文献   

7.
Formation and oxidation state of CeO(2-x) nanotubes   总被引:1,自引:0,他引:1  
Well-crystalline CeO(2-x) nanotubes are synthesized via a mild hydrothermal reaction route using cerium nitrate and ammonium hydroxide as reactants. The CeO(2-x) nanotubes have the same structure as the bulk CeO2 but larger lattice parameter. The measurement of the ratio of M5/M4 edge shows the valence reduction of cerium ions for the CeO(2-x) nanotubes.  相似文献   

8.
We have demonstrated a facile approach for the low‐temperature synthesis of crystalline inorganic/metallic nanocrystal‐halloysite composite nanotubes by employing the bulk controlled synthesis of inorganic/metallic nanocrystals on halloysite nanotubes. The halloysite clay nanotubes can adsorb the target precursor and induce inorganic/metallic nanocrystals to grow in situ. The crystalline phase and morphology of the composite clay nanotubes is tunable. By simply tuning the acidity of the titania sol, the crystalline titania‐clay nanotubes with tunable crystalline phases of anatase, a mixture of anatase and rutile or rutile are achieved. The approach is general and has been extended to synthesize the representative perovskite oxide (barium and strontium titanate)‐halloysite composite nanotubes. Metallic nickel nanocrystal can also be grown on the surface of halloysite nanotubes at low temperature. The traditional thermal treatment for crystallite transformation is not required, thus intact contour of halloysite nanotubes and the crystallinity structure of halloysite nanotubes can be guaranteed. The combined properties from inorganic/metallic nanocrystal (high refractive index, high dielectric constant and catalytic ability) and the halloysite clay nanotubes are promising for applications such as photonic crystals, high‐k‐gate dielectrics, photocatalysis and purification.  相似文献   

9.
We present an innovative wet-chemistry-assisted nanotube-substitution reaction approach for the highly efficient synthesis of boron- and nitrogen-codoped single-walled carbon nanotubes (B(x)C(y)N(z)-SWNTs) in bulk quantities. The as-synthesized ternary system B(x)C(y)N(z)-SWNTs are of high purity and quality and have fairly homogeneous B and N dopant concentrations. Electrical transport measurements on SWNT-network thin-film transistors revealed that the B(x)C(y)N(z)-SWNTs were composed primarily of the semiconducting nanotubes, in contrast to the starting pristine C-SWNTs, which consisted of a heterogeneous mixture of both semiconducting and metallic types.  相似文献   

10.
In this paper, ice nanotubes confined in carbon nanotubes are investigated by molecular dynamics. The trigonal, square, pentagonal, and hexagonal water tubes are obtained, respectively. The current-voltage (I-V) curves of water nanotubes are found to be nonlinear, and fluctuations of conductance spectra of these ice nanotubes show that the transport properties of ice nanotubes are quite different from those of bulk materials. Our studies indicate that the conductance gap of ice nanotube is related to the difference value from the Fermi energy EF to the nearest molecular energy level E0. Increasing the diameter of a water molecular nanostructure results in the increase of the conductance.  相似文献   

11.
Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL‐2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single‐walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D–2 law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single‐wall components of the double‐wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross‐section of the external walls in the armchair‐like double‐wall nanotubes. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
We report experimental results on the structure and melting behavior of ice confined in multi-walled carbon nanotubes and ordered mesoporous carbon CMK-3, which is the carbon replica of a SBA-15 silica template. The silica template has cylindrical mesopores with micropores connecting the walls of neighboring mesopores. The structure of the carbon replica material CMK-3 consists of carbon rods connected by smaller side-branches, with quasi-cylindrical mesopores of average pore size 4.9 nm and micropores of 0.6 nm. Neutron diffraction and differential scanning calorimetry have been used to determine the structure of the confined ice and the solid-liquid transition temperature. The results are compared with the behavior of water in multi-walled carbon nanotubes of inner diameters of 2.4 nm and 4 nm studied by the same methods. For D(2)O in CMK-3 we find evidence of the existence of nanocrystals of cubic ice and ice IX; the diffraction results also suggest the presence of ice VIII, although this is less conclusive. We find evidence of cubic ice in the case of the carbon nanotubes. For bulk water these crystal forms only occur at temperatures below 170 K in the case of cubic ice, and at pressures of hundreds or thousands of MPa in the case of ice VIII and IX. These phases appear to be stabilized by the confinement.  相似文献   

13.
利用分子动力学方法研究了(5,5)扶手椅型和(10,10)锯齿型纳米碳管在水中受拉伸负载下的机械性质.通过计算纳米碳管中氧和氢原子的局部密度分布研究了限制效应.结果表明,碳管在水中的杨式系数与在真空下相同,而碳管在水中的拉伸应力小于在真空中的.  相似文献   

14.
A novel nanostructure, cubic silicon carbide (3C-SiC) nanoparticles encapsulated in branched wavelike carbon nanotubes have been prepared by a reaction of 1,2-dimenthoxyethane (CH3OCH2CH2OCH3), SiCl4, and Mg in an autoclave at 600 degrees C. According to X-ray powder diffraction, the products are composed of 3C-SiC and carbon. TEM and HRTEM images show that the as-synthesized products are composed of 3C-SiC nanoparticles encapsulated in branched carbon nanotubes with wavelike walls. The diameter of the 3C-SiC cores is approximately 20-40 nm and the thickness of the carbon shells is about 3-5 nm. In Raman scattering spectroscopy, both the TO (Gamma) phonon line and the LO (Gamma) phonon line have red shifts about 6 cm(-1) relative to that for the bulk 3C-SiC. The photoluminescence (PL) spectrum shows that there are two emission peaks: blue light emission (431 nm) and violet light emission (414 nm). A sequential deposition growth process (with cores as the templates for the shells) for the nanostructure was proposed.  相似文献   

15.
Bamboo-like nitrogen-doped carbon(CNx) nanotubes were synthesized by chemical vapor deposition (CVD) at a high reaction temperature of 600―900 °C. The butylamine and Fe/SBA-15 molecular sieve have been used as precursor and catalyst, respectively. Transmission electron microscopy(TEM) and high resolution transmission electron microscopy(HRTEM) observations show that the outer diameter and wall thickness as well as the inner diameter were increased with increasing reaction temperature in a temperature range of 600―800 °C. A synergism mechanism of the growth through bulk diffusion and the competitive growth through surface diffusion functions during the synthesis of CNx nanotubes was proposed.  相似文献   

16.
Directed self-assembly of surfactants in carbon nanotube materials   总被引:1,自引:0,他引:1  
The self-assembly of surfactant molecules on crossing carbon nanotubes has been investigated using a bead-spring model and implicit solvent dissipative particle dynamics simulations. Adsorption is directed to the nanotube crossing by its higher hydrophobic potential which is due to the presence of two surfaces. As a consequence of the tendency of surfactant molecules to self-assemble into micelles, the adsorbed molecules form a "central aggregate" at the crossing, thus, confining the molecules to the immediate vicinity of the crossing. Adsorption on the remaining nanotube surface becomes significant only at higher surfactant concentrations, where the molecules self-assemble to hemimicelles which grow continuously to full micelles upon increase of the (bulk) surfactant concentration. Our results allow two conclusions for the rational design of nanostructured materials: (i) the size of the central aggregate can not be much larger than that of a bulk micelle and (ii) control of the adsorbed structures is conveniently possible via the (bulk) surfactant concentration.  相似文献   

17.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

18.
First‐principles calculations of the atomic and electronic structure of double‐wall nanotubes (DWNTs) of α‐V2O5 are performed. Relaxation of the DWNT structure leads to the formation of two types of local regions: 1) bulk‐type regions and 2) puckering regions. Calculated total density of states (DOS) of DWNTs considerably differ from that of single‐wall nanotubes and the single layer, as well as from the DOS of the bulk and double layer. Small shoulders that appear on edges of valence and conduction bands result in a considerable decrease in the band gaps of the DWNTs (up to 1 eV relative to the single‐layer gaps). The main reason for this effect is the shift of the inner‐ and outer‐wall DOS in opposite directions on the energetic scale. The electron density corresponding to shoulders at the conduction‐band edges is localized on vanadium atoms of the bulk‐type regions, whereas the electron density corresponding to shoulders at the valence‐band edges belongs to oxygen atoms of both regions.  相似文献   

19.
A novel precursor, a mixture of B2O2 and Mg which is generated in situ by reacting B and MgO at 1300 degrees C, can be used to effectively synthesize bulk amounts of pure BN nanotubes with Mg evaporated from the final product; transmission electron microscope observation for the synthesized BN nanotubes indicates that defects present strongly depend on the tube diameter.  相似文献   

20.
We utilized oil/water interfaces as a new field to produce lipid nanotubes (LNTs), which are formed by the self-assembly of lipid molecules, and possess hollow nanometer-wide cylindrical structures. Compared to the self-assembling field in bulk water, oil/water interfaces produced shorter lipids nanotubes less than 10 microm long more efficiently. In addition, we found that the oil/water interface accumulates lipid nanotubes spontaneously. This methodology is favorable to fabricate LNTs as new nano-fluidic devices, or sensors that require accumulation and alignment in two dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号