首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physica A》1988,149(3):395-405
We present a method for finding statistical properties of the first passage time to exit an interval of general diffusion processes subject to random delta function impulses. Exact solutions are found for the mean first passage time for Brownian motion. Other special cases, detailed in the text, can also be solved in some generality.  相似文献   

2.
This paper discusses the simplest first passage time problems for random walks and diffusion processes on a line segment. When a diffusing particle moves in a time-varying field, use of the adjoint equation does not lead to any simplification in the calculation of moments of the first passage time as is the case for diffusion in a time-invariant field. We show that for a discrete random walk in the presence of a sinusoidally varying field there is a resonant frequency * for which the mean residence time on the line segment is a minimum. It is shown that for a random walk on a line segment of lengthL the mean residence time goes likeL 2 for largeL when *, but when =* the dependence is proportional toL. The results of our simulation are numerical, but can be regarded as exact. Qualitatively similar results are shown to hold for diffusion processes by a perturbation expansion in powers of a dimensionless velocity. These results are extended to higher values of this parameter by a numerical solution of the forward equation.  相似文献   

3.
As a first step in the first passage problem for passive tracer in stratified porous media, we consider the case of a two-dimensional system consisting of two layers with different convection velocities. Using a lattice generating function formalism and a variety of analytic and numerical techniques, we calculate the asymptotic behavior of the first passage time probability distribution. We show analytically that the asymptotic distribution is a simple exponential in time for any choice of the velocities. The decay constant is given in terms of the largest eigenvalue of an operator related to a half-space Green's function. For the anti-symmetric case of opposite velocities in the layers, we show that the decay constant for system lengthL crosses over fromL –2 behavior in the diffusive limit toL –1 behavior in the convective regime, where the crossover lengthL * is given in terms of the velocities. We also have formulated a general self-consistency relation, from which we have developed a recursive approach which is useful for studying the short-time behavior.  相似文献   

4.
V Balakrishnan  M Khantha 《Pramana》1983,21(3):187-200
We consider an arbitrary continuous time random walk (ctrw)via unbiased nearest-neighbour jumps on a linear lattice. Solutions are presented for the distributions of the first passage time and the time of escape from a bounded region. A simple relation between the conditional probability function and the first passage time distribution is analysed. So is the structure of the relation between the characteristic functions of the first passage time and escape time distributions. The mean first passage time is shown to diverge for all (unbiased)ctrw’s. The divergence of the mean escape time is related to that of the mean time between jumps. A class ofctrw’s displaying a self-similar clustering behaviour in time is considered. The exponent characterising the divergence of the mean escape time is shown to be (1−H), whereH(0<H<1) is the fractal dimensionality of thectrw.  相似文献   

5.
Siegert's integral equation approach to calculate the first passage time distribution is generalized to the case of a one-dimensional diffusion process in an oscillating drift field. A simple algorithm to solve the integral equations is developed and numerical results are presented.  相似文献   

6.
Asymptotic behaviour of the moments of the first passage time (FPT) on a one-dimensional lattice holding a multifurcating hierarchy of teeth is studied. There is a transition from ordinary to anomalous diffusion when the parameter controlling the relative sizes of the teeth, is varied with respect to the furcating number of the hierarchy. The scaling behaviour of the moments of FPT with the linear dimensions of the lattice segment indicates that in the anomalcus phase the probability density of the FPT is multifractal.  相似文献   

7.
This note contains a development of the theory of first passage times for one-dimensional lattice random walks with steps to nearest neighbor only. The starting point is a recursion relation for the densities of first passage times from the set of lattice points. When these densities are unrestricted, the formalism allows us to discuss first passage times of continuous time random walks. When they are negative exponential densities we show that the resulting equation is the adjoint of the master equation. This is the lattice analog of a correspondence well known for systems describable by a Fokker-Planck equation. Finally we discuss first passage problems for persistent random walks in which at each step the random walker continues in the same direction as the preceding step with probability a or reverses direction with probability 1–  相似文献   

8.
A general expression is derived for the Laplace transform of the probability density of the first passage time for the span of a symmetric continuous-time random walk to reach levelS. We show that when the mean time between steps is finite, the mean first passage time toS is proportional toS 2. When the pausing time density is asymptotic to a stable density we show that the first passage density is also asymptotically stable. Finally when the jump distribution of the random walk has the asymptotic formp(j)A/|j| +1, 0 < < 2 it is shown that the mean first passage time toS goes likeS .  相似文献   

9.
M Khantha  V Balakrishnan 《Pramana》1983,21(2):111-122
We present closed expressions for the characteristic function of the first passage time distribution for biased and unbiased random walks on finite chains and continuous segments with reflecting boundary conditions. Earlier results on mean first passage times for one-dimensional random walks emerge as special cases. The divergences that result as the boundary is moved out to infinity are exhibited explicitly. For a symmetric random walk on a line, the distribution is an elliptic theta function that goes over into the known Lévy distribution with exponent 1/2 as the boundary tends to ∞.  相似文献   

10.
It has recently been shown that the first passage time problem for a certain class of one-dimensional processes that includes shot noise can be formulated in terms of a set of integral equations. These are found by exact enumeration of all possible trajectories. We show that the equations can be found by more direct means for processes described by the evolution equation , wheren(t) is time-localized shot noise.  相似文献   

11.
Systems where resource availability approaches a critical threshold are common to many engineering and scientific applications and often necessitate the estimation of first passage time statistics of a Brownian motion (Bm) driven by time-dependent drift and diffusion coefficients. Modeling such systems requires solving the associated Fokker-Planck equation subject to an absorbing barrier. Transitional probabilities are derived via the method of images, whose applicability to time dependent problems is shown to be limited to state-independent drift and diffusion coefficients that only depend on time and are proportional to each other. First passage time statistics, such as the survival probabilities and first passage time densities are obtained analytically. The analysis includes the study of different functional forms of the time dependent drift and diffusion, including power-law time dependence and different periodic drivers. As a case study of these theoretical results, a stochastic model of water resources availability in snowmelt dominated regions is presented, where both temperature effects and snow-precipitation input are incorporated.  相似文献   

12.
We introduce singular perturbation methods for constructing asymptotic approximations to the mean first passage time for Markov jump processes. Our methods are applied directly to the integrai equation for the mean first passage time and do not involve the use of diffusion approximations. An absorbing interval condition is used to properly account for the possible jumps of the process over the boundary which leads to a Wiener-Hopf problem in the neighborhood of the boundary. A model of unimolecular dissociation is considered to illustrate our methods.  相似文献   

13.
We consider the time evolution of a class of stochastic systems of finite size with polynomial nearest neighbor transition rates. We obtain analytical expressions for the first passage time (FPT) and its moments. We show that the mean FPT, averaged over a uniform initial distribution, shows a simple asymptotoc behavior with the system size and the parameters of the transition rates.  相似文献   

14.
We determine the probability distribution of the first passage time for a class of non-Markovian processes. This class contains, amongst others, the well-known continuous time random walk (CTRW), which is able to account for many properties of anomalous diffusion processes. In particular, we obtain the mean first passage time for CTRW processes with truncated power-law transition time distribution. Our treatment is based on the fact that the solutions of the non-Markovian master equation can be obtained via an integral transform from a Markovian Langevin process.  相似文献   

15.
Shao-Ping Wang  Wen-Jiang Pei 《Physica A》2008,387(18):4699-4708
In this article, we study some theoretical and technological problems with relation to multiple Brownian particles on networks. We are especially interested in the behavior of the first arriving Brownian particle when all the Brownian particles start out from the source s simultaneously and head to the destination h randomly. We analyze the first passage time (FPT) Ysh(z) and the mean first passage time (MFPT) 〈Ysh(z)〉 of multiple Brownian particles on complex networks. Equations of Ysh(z) and 〈Ysh(z)〉 are obtained. On a variety of commonly encountered networks, we observe first passage properties of multiple Brownian particles from different aspects. We find that 〈Ysh(z)〉 drops substantially when particle number z increases at the first stage, and converges to dsh, the distance between the source and the destination when z. The distribution of FPT Prob{Ysh(z)=t},t=0,1,2,… is also analyzed in these networks. The distribution curve peaks up towards t=dsh when z increases. Consequently, if particle number z is set appropriately large, the first arriving Brownian particle will go along the shortest or near shortest paths between the source and the destination with high probability. Simulations confirm our analysis. Based on theoretical studies, we also investigate some practical problems using multiple Brownian particles, such as communication on P2P networks, optimal routing in small world networks, phenomenon of asymmetry in scale-free networks, information spreading in social networks, pervasion of viruses on the Internet, and so on. Our analytic and experimental results on multiple Brownian particles provide useful evidence for further understanding and properly tackling these problems.  相似文献   

16.
The theory of the mean first passage time is developed for a general discrete non-Markov process whose time evolution is governed by a generalized master equation. The mean first passage time is determined by an adjoint matrix + in a form analogous to the Fokker Planck case. The theory is illustrated by two examples: A one-dimensional unit step non-Markov process and a non-Markov process with two-step transitions. Explicit expressions for the mean first passage time are derived.  相似文献   

17.
We study the distribution of residence time or equivalently that of "mean magnetization" for a family of Gaussian Markov processes indexed by a positive parameter alpha. The persistence exponent for these processes is simply given by theta=alpha but the residence time distribution is nontrivial. The shape of this distribution undergoes a qualitative change as theta increases, indicating a sharp change in the ergodic properties of the process. We develop two alternate methods to calculate exactly but recursively the moments of the distribution for arbitrary alpha. For some special values of alpha, we obtain closed form expressions of the distribution function.  相似文献   

18.
We use stochastic dynamics to develop the patterned attractor of a non-local extended system. This is done analytically using the stochastic path perturbation approach scheme, where a theory of perturbation in the small noise parameter is introduced to analyze the random escape of the stochastic field from the unstable state. Emphasis is placed on the specific mode selection that these types of systems exhibit. Concerning the stochastic propagation of the front we have carried out Monte Carlo simulations which coincide with our theoretical predictions.  相似文献   

19.
The generalized extended stochastic central difference (GESCD) method is applied to study the response statistics and first passage time of nonlinear ship rolling in narrow band stationary and non-stationary random seas. The GESCD method is based on a combination of the extended stochastic central difference method with a statistical linearization technique, modified adaptive time scheme, and time coordinate transformation. The extended stochastic central difference method is, however, an extension of the stochastic central difference method for the determination of the recursive mean square or covariance of responses of systems under narrow band stationary and non-stationary random disturbances. Approximate first passage probabilities of nonlinear systems based on the modified mean rate of various crossings proposed earlier by the first author were determined. It is concluded that the GESCD method is very accurate, simple and efficient to apply compared with Monte Carlo simulation. The proposed method is applicable to cases with large nonlinearities and intensive random excitations. The approximate first passage probabilities of the nonlinear system determined by the proposed approach are very accurate as they are in excellent agreement with those evaluated by the Monte Carlo simulation. It is believed that the model considered in this paper is a closer representation to reality than those reported earlier in the literature.  相似文献   

20.
We discuss first passage time problems for a class of one-dimensional master equations with separable kernels. For this class of master equations the integral equation for first passage time moments can be transformed exactly into ordinary differential equations. When the separable kernel has only a single term the equation for the mean first passage time obtained is exactly that for simple diffusion. The boundary conditions, however, differ from those appropriate to simple diffusion. The equations for higher moments differ slightly from those for simple diffusion. Analysis is presented, of a generalization of a model of a random walk with long-range jumps first investigated by Lindenberg and Shuler. Since the equations can be solved exactly one can study the behavior of boundary conditions in the continuum limit. The generalization to a larger number of terms in the separable kernel leads to higher order equations for the first passage time moments. In each case, boundary conditions can be found directly from the original master equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号