首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The folding of the single-stranded 3' end of the human telomere into G-quadruplex arrangements inhibits the overhang from hybridizing with the RNA template of telomerase and halts telomere maintenance in cancer cells. The ability to thermally stabilize human telomeric DNA as a four-stranded G-quadruplex structure by developing selective small molecule compounds is a therapeutic path to regulating telomerase activity and thereby selectively inhibit cancer cell growth. The development of compounds with the necessary selectivity and affinity to target parallel-stranded G-quadruplex structures has proved particularly challenging to date, relying heavily upon limited structural data. We report here on a structure-based approach to the design of quadruplex-binding ligands to enhance affinity and selectivity for human telomeric DNA. Crystal structures have been determined of complexes between a 22-mer intramolecular human telomeric quadruplex and two potent tetra-substituted naphthalene diimide compounds, functionalized with positively charged N-methyl-piperazine side-chains. These compounds promote parallel-stranded quadruplex topology, binding exclusively to the 3' surface of each quadruplex. There are significant differences between the complexes in terms of ligand mobility and in the interactions with quadruplex grooves. One of the two ligands is markedly less mobile in the crystal complex and is more quadruplex-stabilizing, forming multiple electrostatic/hydrogen bond contacts with quadruplex phosphate groups. The data presented here provides a structural rationale for the biophysical (effects on quadruplex thermal stabilization) and biological data (inhibition of proliferation in cancer cell lines and evidence of in vivo antitumor activity) on compounds in this series and, thus, for the concept of telomere targeting with DNA quadruplex-binding small molecules.  相似文献   

2.
Telomerase is a potential cancer marker. We developed a new and robust telomerase activity assay which combines the modified telomere repeat amplification protocol (TRAP) with magnetic beads-based electrochemiluminescence (ECL) detection. The high performance of this assay is related to the determination of telomerase activity from single cell levels, and ECL intensity is linear over the range of 1–1000 HeLa cell equivalents. The proposed telomerase assay offers a highly cost- and time-effective alternative to presently available telomerase assays, which are limited by tedious and complicated post-PCR detection.  相似文献   

3.
Telomere maintenance and telomerase reactivation is essential for the transformation of most human cancer cells. Telomere shortening to the threshold length, mutations of the telomere-associated proteins, and/or telomerase RNA lead to telomeric dysfunction and therefore genomic instability. Telomerase up-regulation in 85% of human cancer cells has become a hallmark of cancers, hence a promising target for anticancer therapy. In this review, we discuss the mechanism of cancer due to telomere dysfunction and the resulting biological effects, the control of telomerase activity, and the new developments in cancer therapies targeting telomere and telomerase.  相似文献   

4.
5.
Highlights? Growth arrest induced by human telomerase in yeast is chemically reversible ? Readout is sensitive to telomerase catalytic activity and telomere recruitment ? Three cell-permeable compounds also inhibit purified human telomerase ? Yeast can be successfully used to screen for human telomerase inhibitors  相似文献   

6.
Telomerase Inhibitors: Telomerase is the enzyme responsible for maintaining telomere length and it has activity not observed in normal somatic cells. In contrast, high expression of telomerase is observed in around 85-90% of human tumour cells and therefore telomerase is regarded as a specific target for development of cancer chemotherapeutic agents. There are several types of inhibitor known. For example antisense oligodeoxynucleotides and related compounds which exhibit potent inhibition of telomerase in the picomolar range. In spite of this research there have been no clinical trials of inhibitors to date, and discovery of novel inhibitors will contribute to evaluation of telomerase inhibitors for cancer chemotherapy. Recent developments have highlighted new telomerase inhibitors based on the bisindole unit (i) (S. Sasaki et. al., Bioorg. Med. Chem. Lett., 11, (2001), 583).  相似文献   

7.
Telomerase is a ribonucleoprotein complex; it uses an internal RNA template to synthesize telomere DNA. Telomerase is active in 90% of cancers and can be used as a diagnostic marker. We have optimized conditions for the extraction from small tissue samples (<0.05 g) of cervical lesions to analyze telomerase activity and selected the optimal concentrations of the tissue extracts. Different concentrations of the extracts were used to determine the presence of possible telomerase inhibitors and Taq-polymerase in the extracts. Using lung and kidney cancer samples it was shown that these conditions are applicable for the estimation of telomerase activity in different cancer types. Many investigations of telomerase activity using different types of TRAP (Telomere Repeat Amplification Protocol) have been performed. The possibility of comparison of TRAP results with radioactive and Sybr green detection remains open. We compared these two types of detection for several samples of cervical intraepithelial neoplasias and conclude that they have similar sensitivities.  相似文献   

8.
9.
Inhibition of telomerase activity through stabilizing telomere G-quadruplex with small chemical ligands is emerging as a novel strategy for cancer therapy. For the large number of ligands that have been reported to inhibit telomerase activity, it is difficult to validate the contribution of G-quadruplex stabilization to the overall inhibition. Using a modified telomere repeat amplification protocol (TRAP) method to differentiate the telomere G-quadruplex independent effect from dependent ones, we analyzed several ligands that have high affinity and/or selectivity to telomere G-quadruplex. Our results show that these ligands effectively inhibited telomerase activity in the absence of telomere G-quadruplex. The expected G-quadruplex-dependent inhibition was only obvious for the cationic ligands at low K(+) concentration, but it dramatically decreased at physiological concentration of K(+). These observations demonstrate that the ligands are much more than G-quadruplex stabilizers with a strong G-quadruplex-irrelevant off-target effect. They inhibit telomerase via multiple pathways in which stabilization of telomere G-quadruplex may only make a minor or neglectable contribution under physiologically relevant conditions depending on the stability of telomere G-quadruplex under ligand-free conditions.  相似文献   

10.
Telomeric DNA is a potential selective target for cancer therapy since the tumour-associated enzyme telomerase regulates telomere maintenance in most cancer cells. The 3′ single-stranded ends of telomeric DNA can be folded into quadruplex structures by appropriate small molecules. We describe the preparation of a new class of 2,7-disubstituted 10H-indolo[3,2-b]quinolines with enhanced selectivity for the stabilisation of quadruplex DNA compared to duplex DNA, and also the preparation of a key intermediate for the synthesis of trisubstituted quindolines.  相似文献   

11.
Zhou X  Xing D 《Chemical Society reviews》2012,41(13):4643-4656
Human telomerase is a ribonucleoprotein complex that functions as a telomere terminal transferase by adding multiple TTAGGG hexamer repeats using its integral RNA as the template. There is a very strong association between telomerase activity and malignancy in nearly all types of cancer, suggesting that telomerase could be used not only as a diagnostic and prognostic marker but also as a therapeutic target for managing cancer. The significant progress in biomedical telomerase research has necessitated the development of new bioanalytical methods for the rapid, sensitive, and reliable detection of telomerase activity in a particular cell or clinical tissue and body fluids. In this review, we highlight some of the latest methods for identifying telomerase activity and inhibition and discuss some of the challenges for designing innovative telomerase assays. We also summarise the current technologies and speculate on future directions for telomerase testing.  相似文献   

12.
Although the telomeric repeat amplification protocol (TRAP) has served as a powerful assay for detecting telomerase activity, its use has been significantly limited when performed directly in complex, interferant-laced samples. In this work, we report a modification of the TRAP assay that allows the detection of high-fidelity amplification of telomerase products directly from concentrated cell lysates. Briefly, we covalently attached 12 nm gold nanoparticles (AuNPs) to the telomere strand (TS) primer, which is used as a substrate for telomerase elongation. These TS-modified AuNPs significantly reduce polymerase chain reaction (PCR) artifacts (such as primer dimers) and improve the yield of amplified telomerase products relative to the traditional TRAP assay when amplification is performed in concentrated cell lysates. Specifically, because the TS-modified AuNPs eliminate most of the primer-dimer artifacts normally visible at the same position as the shortest amplified telomerase PCR product apparent on agarose gels, the AuNP-modified TRAP assay exhibits excellent sensitivity. Consequently, we observed a 10-fold increase in sensitivity for cancer cells diluted 1000-fold with somatic cells. It thus appears that the use of AuNP-modified primers significantly improves the sensitivity and specificity of the traditional TRAP assay and may be an effective method by which PCR can be performed directly in concentrated cell lysates.  相似文献   

13.
Telomeres are the ends of the linear chromosomes of eukaryotes and consist of tandem GT-rich repeats in telomere sequence i.e. 500-3000 repeats of 5'-TTAGGG-3' in human somatic cells, which are shortened gradually with age. The G-rich overhang of telomere sequence can adopt different intramolecular fold-backs and tetra-stranded DNA structures, in vitro, which inhibit telomerase activity. In this report, DNA binding agents to telomere sequence were studied novel therapeutic possibility to destabilize telomeric DNA sequences. Oligonucleotides containing the guanine repeats in human telomere sequence were synthesized and used for screening potential antitumor drugs. Telomeric DNA sequence was characterized using spectral measurements and CD spectroscopy. CD spectrum indicated that the double-stranded telomeric DNA is in a right-handed conformation. Polyacrylamide gel electrophoresis was performed for binding behaviors of antitumor compounds with telomeric DNA sequence. Drugs interacted with DNA sequence caused changes in the electrophoretic mobility and band intensity of the gels. Depending on the binding mode of the anticancer drugs, telomeric DNA sequence was differently recognized and the efficiency of cleavage of DNA varies in the bleomycin-treated samples under different conditions. DNA cleavage occurred at about 1% by the increments of 1 micromM bleomycin-Fe(III). These results imply that the stability of human telomere sequence is important in conjunction with the cancer treatment and aging process.  相似文献   

14.
Series of novel pyrazolo[3,4‐d]pyrimidines as potential telomerase inhibitors were synthesized. Results of the antitumor assay indicated that compounds 4b , 5a – b , 13b , c , and 14a , b exhibited the most potent activity (IC50 from 39 to 43 μM) against Ehrlich ascites carcinoma cells (EAC). Also, the newly synthesized compounds were examined for telomerase inhibition by the known a TRAP assay. The results showed that compound 13c has remarkable inhibition activity with IC50 value of 30 μM. On the other hand, computational studies were performed to the titled compounds to get insight in their degree of recognition with the conserved amino acids of the telomerase enzyme active site (code: 3DU6) as promising lead in the cancer cure era.  相似文献   

15.
Transformation with viral oncogene extends the lifespan of normal cells beyond replicative senescence called M1, but most of them eventually succumb to second crisis called M2 when telomeres become critically short. To acquire an infinite growth capacity, these cells have to overcome M2 crisis, which is known to follow telomerase activation. We have investigated if telomerase expression is required for virus-transformed pre-M2 cells to avert M2 crisis. Human retinal pigment epithelial (RPE) cells were transformed with simian virus 40 large T antigen and a VR3 clone in pre-M2 stage was obtained. Then, VR3 cells were transfected with a telomerase-containing vector and two cell lines that expressed telomerase temporarily or continuously were cloned and designated as ST1 and ST2, respectively. Normal RPE cells went into senescence after 36 population doublings. Although the lifespan was extended in the VR3 clone about 20 times more, it eventually underwent second crisis. The telomere length of VR3 decreased compared to that of normal RPE cells and the decrease continued during subculture. However, the ST1 and ST2 clones that expressed both T antigen and telomerase could avert this crisis. The initial telomere length of ST1 and ST2 was longer than that of normal cells. The ST1 underwent growth arrest again as telomerase expression faded out and elongated telomere was shortened, but the ST2 that maintained telomerase activity and telomere length proliferated continuously. In conclusion, telomerase activation is definitely required to overcome M2 crisis and acquire an infinite lifespan in human somatic epithelial cells and this mechanism is independent from M1 crisis escape in cell immortalization.  相似文献   

16.
The G-rich strand of human telomeric DNA can fold into a four-stranded structure called G-quadruplex and inhibit telomerase activity that is expressed in 85-90% tumor cells. For this reason, telomere quadruplex is emerging as a potential therapeutic target for cancer. Information on the structure of the quadruplex in the physiological environment is important for structure-based drug design targeting the quadruplex. Recent studies have raised significant controversy regarding the exact structure of the quadruplex formed by human telomeric DNA in a physiological relevant environment. Studies on the crystal prepared in K+ solution revealed a distinct propeller-shaped parallel-stranded conformation. However, many later works failed to confirm such structure in physiological K+ solution but rather led to the identification of a different hybrid-type mixed parallel/antiparallel quadruplex. Here we demonstrate that human telomere DNA adopts a parallel-stranded conformation in physiological K+ solution under molecular crowding conditions created by PEG. At the concentration of 40% (w/v), PEG induced complete structural conversion to a parallel-stranded G-quadruplex. We also show that the quadruplex formed under such a condition has unusual stability and significant negative impact on telomerase processivity. Since the environment inside cells is molecularly crowded, our results obtained under the cell mimicking condition suggest that the parallel-stranded quadruplex may be the more favored structure under physiological conditions, and drug design targeting the human telomeric quadruplex should take this into consideration.  相似文献   

17.
人体端粒由富含鸟嘌呤(G)的DNA重复序列组成,该序列在一定的条件下可以形成G-四链体DNA的结构.小分子化合物诱导该结构的形成并使之稳定,不但可以抑制端粒酶的活性或降低癌基因的转录表达而达到抗肿瘤的目的,还可以作为G-四链体DNA的探针,辅助G-四链体DNA生物功能的研究及与之相关疾病的诊断.因此,G-四链体DNA稳定剂的设计是近年来化学生物学的重要前沿领域之一.到目前为止,G-四链体DNA稳定剂主要可分为有机小分子化合物和金属配合物.本文重点综述这两方面特别是后者的最新研究进展.  相似文献   

18.
High-throughput analysis of telomerase by capillary electrophoresis   总被引:2,自引:0,他引:2  
The enzyme telomerase is expressed in (85-90)% of all human cancers, but not in normal, non-stem cell somatic tissues. Clinical assays for telomerase in easily obtained body fluids would have great utility as noninvasive, cost-effective methods for the early detection of cancer. The most commonly used method for the detection and quantification of telomerase enzyme activity is the polymerase chain reaction (PCR)-based assay known as the telomerase repeat amplification protocol or TRAP assay. Most of the TRAP assay systems use a slab-gel based electrophoresis system to size and quantify the PCR-amplified extension products. We are developing high-throughput capillary electrophoresis (CE) methods for the analysis of TRAP/PCR products. The TRAP assay was conducted on lysates of the human lung cancer cell line A-549 in reactions containing 5-100 cells. TRAP/PCR products were generated using a fluorescent 4,7,2'4'5'7',-hexachloro-6-carboxyfluorescein(HEX)-labeled TS primer and analyzed on the Applied Biosystems Model 310 CE system using POP4 polymer. After analysis with GeneScan and Genotyper software, the total peak areas of the TRAP ladder extension products were computed using Microsoft Excel. Results were compared with unlabeled TRAP/PCR products analyzed on the Bio-Rad BioFocus 3000 CE system using 6% high molecular weight polyvinylpyrrolidone (HMW PVP) polymer and SYBR Green I dye. Both CE systems were able to resolve the TRAP ladder products with high reproducibility and sensitivity (5-15 cells). With the appropriate robotic sample handling system, these CE methods would enable performing the telomerase TRAP assay with increased sensitivity, reproducibility and automation over slab-gel methods.  相似文献   

19.
Telomerase shows increased activity in most human cancers and germ line cells, but not in normal human somatic cells. We describe a novel chemiluminescence method for the facile assay of telomerase activity in human cells. The telomerase substrate was incubated with the cell lysate containing various amounts of telomerase, and then the telomerase product was amplified by the polymerase-chained reaction (PCR). The PCR products were separated from the excess substrate, primer and deoxyribonucleotide triphosphates by a centrifugal filter, which distinguished different molecular sizes. The isolated products were reacted with a DNA-detectable chemiluminogenic reagent, 3,4,5-trimethoxyphenylglyoxal. The proposed assay method gave linearity for the telomerase activity in 100 to 10000 cells (r2=0.997), and allowed the assay not only of lower activity, but also of higher activity of telomerase without the requirement of any special labeled-PCR primers in the assay system.  相似文献   

20.
A single-stranded human telomere DNA sequence can fold into an intramolecular G-quadruplex structure, which has been shown to inhibit telomerase activity. Small molecules that selectively target and stabilise the G-quadruplex structure have been proposed as potential anticancer drugs. In this study, we analysed the properties of binding of malachite green, a cationic triphenylmethane dye, to the G-quadruplex of d[(T2AG3)4] by UV spectroscopy of thermal melting analysis, a competitive equilibrium dialysis assay, and absorption and circular dichroism spectroscopies. When binding to malachite green, the quadruplex structure that formed in the presence of K+ ions was stabilised with an increase in melting temperatures by 6 °C. Malachite green showed selective binding to the G-quadruplex in the presence of duplex and single-stranded DNAs, owing to which it presents higher potential for anticancer therapy, compared to other triphenylmethane dyes. The induced signals of circular dichroism indicate that the binding mode of malachite green involves intercalation between adjacent guanine tetrads of the G-quadruplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号