首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Using a hierarchical multiscale approach combining quantum mechanics and molecular simulation, we have investigated the adsorption of pure CO(2) and N(2) and their mixture at room temperature in C(168) schwarzite, as a model for nanoporous carbons. First, the adsorbate-adsorbent interaction potential is determined using ab initio quantum mechanics computations, and then the adsorption is predicted using full atomistic Monte Carlo simulations. The extents of adsorption, adsorption energies, and isosteric heats of pure CO(2) and N(2) simulated with the ab initio potential are found to be higher than those with the empirical Steele potential that had been developed from gas adsorption on planar graphite. The inclusion of the electric quadrupole moment of adsorbate in simulation has no discernible effect on N(2) adsorption but results in a larger extent of CO(2) adsorption at high coverages. The selectivity of CO(2) over N(2) in the C(168) schwarzite from a model flue gas is predicted to be significantly larger with the ab initio potential than with the Steele potential. This illustrates the importance of an accurate adsorbate-adsorbent interaction potential in determining gas adsorption and suggests that nanoporous carbons might be useful for the separation of flue gases. As a comparison, the adsorption and selectivity of CO(2) and N(2) in ZSM-5 zeolites are also simulated with the experimentally validated potential parameters. The selectivity in the C(168) schwarzite predicted with the ab initio or Steele potential is found to be larger than the selectivity in all-silica ZSM-5, but less than that in Na-exchanged ZSM-5 zeolites.  相似文献   

2.
This molecular simulation work focuses on the adsorption of water in a priori hydrophobic silicalite-1, a microporous ordered silica. The water-water interactions are described with the SPC model, while water-silica interactions are calculated in the framework of the PN-TrAZ model. The water adsorption isotherm at 300 K, the configurational energies, and the isosteric heat of adsorption are calculated by the grand canonical Monte Carlo (GCMC) simulation method. The thermodynamic integration scheme allows one to calculate the grand potential along the adsorption isotherm. The adsorption results are compared with experiments, showing only qualitative agreement. Indeed, the simulations do not reproduce the expected hydrophobicity of silicalite (Eroshenko, V.; Regis, R.-C.; Soulard, M.; Patarin, J. C. R. Phys. 2002, 3, 111). This indicates that common models used to describe confined polar molecules are far from being operative. In this work, it is shown, on the basis of periodic ab initio calculations, that confined water molecules in silicalite have a dipole value roughly 10% smaller than that in the bulk liquid phase, indicating that the environment felt by a confined water molecule in silicalite pores is not equivalent to that in the bulk liquid. This suggests that effective intermolecular potentials parametrized for bulk water are inefficient to describe ultraconfined water molecules. Reducing the SPC water dipole moment by 5% (i.e., decreasing water partial charges in magnitude) in GCMC calculations does allow reproducing the experimental water/silicalite isotherm at 300 K.  相似文献   

3.
Quantum mechanical calculations are performed using the recently developed hybrid method for interaction energies to determine atom site Lennard-Jones potential parameters for the interactions of molecular nitrogen with C(70) molecules. This ab initio based potential is used in grand canonical Monte Carlo simulations to predict surface adsorption properties of N(2) on five known C(70) structures: rhombohedral, fcc, ideal hcp, deformed hcp, and monoclinic crystals. Because of the presence of five-membered carbon rings and the surface curvature of C(70) molecule, the Lennard-Jones potential parameters for nitrogen-carbon interactions obtained from ab initio based calculations are found to be different from that with planar graphite. The simulation results obtained from these two sets of force fields are compared and shown to differ, particularly at low coverage, where the nitrogen-carbon interactions are more important than the nitrogen-nitrogen interactions. The surface area, monolayer capacity, and isosteric heat of adsorption are calculated for various C(70) crystals and found to change appreciably as a result of the shear-induced phase transformation from hcp to rhombohedral lattice.  相似文献   

4.
We present a model combining ab initio concepts and molecular dynamics simulations for a more realistic treatment of complex adsorption processes. The energy, distance, and orientation of water molecules adsorbed on stoichiometric and reduced rutile TiO(2)(110) surfaces at 140 K are studied via constant temperature molecular dynamics simulations. From ab initio calculations relaxed atomic geometries for the surface and the most probable adsorption sites were derived. The study comprises (i) large two-dimensional surface supercells, providing a realistically low concentration of surface oxygen defects, and (ii) a water coverage sufficiently large to model the onset of the growth of a bulk phase of water on the surface. By our combined approach the influence of both, the metal oxide surface, below, and the bulk water phase, above, on the water molecules forming the interface between the TiO(2) surface and the water bulk layer is taken into account. The good agreement of calculated adsorption energies with experimental temperature programmed desorption spectra demonstrates the validity of our model.  相似文献   

5.
Diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy was used to study the adsorption process of the water-soluble polyacrylic acid (PAA) polymer on hydrous δ-Al2O3. Vibrational assignment of PAA, sodium polyacrylate, (Na–PA) and the PA-oxide surface complex was achieved by comparison of observed band position and intensity in the DRIFT spectra with wavenumbers and intensities from ab initio quantum mechanical calculations. The presented data of polyacrylic acid suggest that IR data calculated ab initio on relatively short oligomers (quantum-mechanical oligomer approach) may provide valuable information regarding the interpretation of polyelectrolyte infrared spectra. Batch adsorption experiments were performed to sorb PAA onto the δ-Al2O3 surface. The results obtained from DRIFT studies were compared with adsorption isotherm experiments in order to relate the level of PAA coverage to the nature of the surface complex. Ab initio molecular orbital calculations on PAA/Al2O3 clusters were used to model possible surface complexes. Strong correlation were found between theoretical and observed DRIFT frequencies of the antisymmetric R-COO vibration. A number of possible configurations of the polyacrylic acid/aluminate surface complex were tested via ab initio calculations. These possible configurations included different di-aluminium octahedral Al3+ surface models. Results obtained from adsorption isotherm experiments, DRIFT spectra and ab initio calculations indicate that the carboxylate oxygens bridge an Al3+-octahedral dimer [Al2(OH)24(H2O)2(OH)] in a ligand-exchange inner sphere complex.  相似文献   

6.
本文根据RI-UMP2方法、TZVPP基组和BSSE校正计算得到的能量数据,推导了描述氢分子与含有不饱和配位键的Cu的金属羧酸配合物相互作用的分子力学力场. 用巨正则系综蒙特卡洛模拟(GCMC)计算了氢在含四方形配位Cu的MOFs材料上的吸附等温线. 通过对比CuBTC的实验吸附数据发现,虽然理论预测含有四方形配位Cu的MOFs具有比含有四面体配位Zn的MOFs与氢分子更强的相互作用,实验合成得到的材料尚未反映这一区别. 以现有的CuBTC实验数据为参照消除理论计算和实验测定的系统偏差,预测了3种含有四方形配位Cu的MOFs材料以CuBTC作为参照的储氢能力.  相似文献   

7.
A classical Lennard-Jones potential is derived from a fit to the ab initio energies obtained from an all-electron mixed-basis calculation for methane in zeolite LTA. The potential predicts the heat of adsorption, adsorption isotherm, and self-diffusivity of methane in excellent agreement with experiment. This study suggests, for the first time, that ab initio energies-in addition to experimental data-can form a good basis for derivation of accurate classical potentials between organic and inorganic elements.  相似文献   

8.
MgO缺陷和不规则表面吸附Cl2的电子结构研究   总被引:2,自引:0,他引:2  
采用从头算程序对MgO表面 3种不同配位位置吸附Cl2 的构型进行优化 ,并用扩展休克尔紧束缚 (EHT)晶体轨道方法对MgO的缺陷和不规则表面吸附Cl2的可能构型进行能带计算 ,讨论了吸附前后能带组成和成键性质的变化。研究表明 :MgO表面吸附Cl2 将更趋向于吸附在O原子上而非Mg原子上 ,而且在 3种配位中MgO表面三配位氧最有利于吸附Cl2 ;吸附时 ,电子从O原子转移到Cl2 分子的反键轨道 ,但是各种吸附构型的MgO表面对Cl2 的吸附作用均比较微弱 ,是典型的物理吸附。  相似文献   

9.
A rational strategy has been used to immobilize open metal sites in ultramicroporosity for stronger binding of multiple H 2 molecules per unsaturated metal site for H 2 storage applications. The synthesis and structure of a mixed zinc/copper metal-organic framework material Zn 3(BDC) 3[Cu(Pyen)] .(DMF) 5(H 2O) 5 (H 2BDC = 1,4 benzenedicarboxylic acid and PyenH 2 = 5-methyl-4-oxo-1,4-dihydro-pyridine-3-carbaldehyde) is reported. Desolvation provides a bimodal porous structure Zn 3(BDC) 3[Cu(Pyen)] (M'MOF 1) with narrow porosity (<0.56 nm) and an array of pores in the bc crystallographic plane where the adsorbate-adsorbent interactions are maximized by both the presence of open copper centers and overlap of the potential energy fields from pore walls. The H 2 and D 2 adsorption isotherms for M'MOF 1 at 77.3 and 87.3 K were reversible with virtually no hysteresis. Methods for determination of the isosteric enthalpies of H 2 and D 2 adsorption were compared. A virial model gave the best agreement (average deviation <1 standard deviation) with the isotherm data. This was used in conjunction with the van't Hoff isochore giving isosteric enthalpies at zero surface coverage of 12.29 +/- 0.53 and 12.44 +/- 0.50 kJ mol (-1) for H 2 and D 2 adsorption, respectively. This is the highest value so far observed for hydrogen adsorption on a porous material. The enthalpy of adsorption, decreases with increasing amount adsorbed to 9.5 kJ mol (-1) at approximately 1.9 mmol g (-1) (2 H 2 or D 2 molecules per Cu corresponding to adsorption on both sides of planar Cu open centers) and is virtually unchanged in the range 1.9-3.6 mmol g (-1). Virial analysis of isotherms at 87.3 K is also consistent with two H 2 or D 2 molecules being bound to each open Cu center. The adsorption kinetics follow a double exponential model, corresponding to diffusion along two types of pores, a slow component with high activation energy (13.35 +/- 0.59 kJ mol (-1)) for the narrow pores and a faster component with low activation energy (8.56 +/- 0.41 kJ mol (-1)). The D 2 adsorption kinetic constants for both components were significantly faster than the corresponding H 2 kinetics for specific pressure increments and had slightly lower activation energies than the corresponding values for H 2 adsorption. The kD 2/ kH 2 ratio for the slow component was 1.62 +/- 0.07, while the fast component was 1.38 +/- 0.04 at 77.3 K, and the corresponding ratios were smaller at 87.3 K. These observations of kinetic isotope quantum molecular sieving in porous materials are due to the larger zero-point energy for the lighter H 2, resulting in slower adsorption kinetics compared with the heavier D 2. The results show that a combination of open metal centers and confinement in ultramicroporosity leads to a high enthalpy for H 2 adsorption over a wide range of surface coverage and quantum effects influence diffusion of H 2 and D 2 in pores in M'MOF 1.  相似文献   

10.
The highly explosive molecules As(N(3))(3) and Sb(N(3))(3) were obtained in pure form by the reactions of the corresponding fluorides with (CH(3))(3)SiN(3) in SO(2) and purification by sublimation. The crystal structures and (14)N NMR, infrared, and Raman spectra were determined, and the results compared to ab initio second-order perturbation theory calculations. Whereas Sb(N(3))(3) possesses a propeller-shaped, pyramidal structure with perfect C(3) symmetry, the As(N(3))(3) molecule is significantly distorted from C(3) symmetry due to crystal packing effects.  相似文献   

11.
A hierarchical approach is used to calculate the single-component fluxes of N2 and O2 in nanoporous carbon molecular sieves (represented by C168 schwarzite) over a wide range of pressures and pressure drops. The self- and corrected diffusivities are calculated using equilibrium molecular dynamics simulations with force fields for the gas-carbon interactions obtained from quantum mechanical calculations. These results are combined with previously reported adsorption isotherms of N2 and O2 in C168 to obtain transport diffusivities and, by use of the Fick's equation of mass transport, to obtain single-component fluxes across the membrane. The diffusion coefficients and fluxes are also calculated using an empirical potential, which has been obtained by fitting low coverage adsorption data of N2 and O2 on a planar graphite sheet. By analyzing the diffusivities calculated with the ab initio potential in the limit of infinite dilution over the temperature range from 80 to 450 K, it is observed that the N2/O2 separation is energetically driven and a high selectivity of O2 over N2 can be obtained at low temperatures. However, with the empirical potential both the energetic and entropic contributions to selectivity were found to be close to unity. Similarly, by calculating single-component fluxes and ideal selectivities at 300 K and finite pressures it is found that the ab initio potential better explains the large O2/N2 selectivities of similarly sized molecules that have been observed experimentally. An interesting reversal in ideal selectivity is observed by adjusting the pressure at the two ends of the membrane. As a consequence, we predict that a highly selective kinetic separation in favor of either nitrogen or oxygen could be obtained with the same membrane depending on the operating conditions.  相似文献   

12.
An adsorption isotherm that generalizes the Langmuir equation for the cluster adsorption of several interacting molecules at one center is proposed. In the case of the adsorption of water molecules at surface hydroxyl groups on modified silica it was shown that the energy and structure characteristics of such a system, determined by the ab initio method, agree with the experimental data and lead to satisfactory agreement with the parameters of the proposed isotherm. __________ Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 41, No. 5, pp. 283–289, September–October, 2005.  相似文献   

13.
The geometries of imidazole and its derivatives were respectively optimized by using ab initio method, and the molecular orbital energy levels and the charge densities were obtained for their optimum geometries. The frontier orbital energy levels, and the net charges of N (1) atom and the imidazole ring of those molecules were obtained with ab initio and SCC-DV-Xα methods. It was found that the inhibition properties of those compounds change with the highest occupied molecular orbital energy levels, and the net charges of N (1) atom. We took four iron atoms on the crystal plane (100) of α-iron as the surface which was used to study the adsorption towards the inhibitors. The adsorption models of the inhibitor to be adsorbed on the Fe-cluster surface were optimized with SCC-DV-Xα method. It turns out that the most favorable model is that the inhibitor molecule is adsorbed on the Fe-cluster surface in an inclined state. The calculation shows that the stabilization energies of the systems are well correlated with the inhibition efficiencies.  相似文献   

14.
The orientational dependence of the interaction between two C(60) molecules is investigated using ab initio calculations. The binding energy, computed within density functional theory in the local density approximation, is substantially smaller than the one derived from the experimental heat of sublimation of fullerite, which calls into question the nature of inter-C(60) bonding. According to our calculations, the experimentally observed orientation with a C(60) presenting a hexagon-hexagon bond to a pentagonal face of the other C(60) is not really favored. Some other configurations are very close in energy and in fact a pentagon facing a pentagon and a hexagon facing a hexagon-hexagon bond are found to be slightly more favorable situations. Our results are compared to previous ones obtained either with previous empirical intermolecular potentials or to existing ab initio studies of crystalline C(60). In addition, the stacking of C(60) in a crystal and in a decahedral (C(60))(7) cluster is discussed.  相似文献   

15.
Cluster size effects in core excitons below the N 1s ionization energy of nitrogen clusters are reported in the energy regime 405-410 eV. These results are compared to the molecular Rydberg states as well as the corresponding bulk excitons of condensed nitrogen. The experimental results are assigned using ab initio calculations. It is found that the lowest excitons (N 1s-->3ssigma and N 1s-->3ppi) are blueshifted relative to the molecular Rydberg transitions, whereas others (N 1s-->3dpi and N 1s-->4ppi) show a redshift. Results from ab initio calculations on (N(2))(13) clearly indicate that the molecular orientation within a cluster is critical to the spectral shift, where bulk sites as well as inner- and outer-surface sites are characterized by different inner-shell absorption energies. These results are compared to the experimental spectra as well as previous work on site-selectively excited atomic van der Waals clusters, providing an improved spectral assignment of core exciton states in weakly bound molecular clusters and the corresponding condensed phase.  相似文献   

16.
The structure and surface chemistry of crystalline beta-Ga2O3 nanoribbons (NRs), deposited in a thin layer on various metallic and dielectric substrates (mainly on Au), have been characterized using vibrational spectroscopy. The results have been analyzed with the aid of a previous ab initio theoretical model for the beta-Ga2O3 surface structure. Raman spectra and normal-incidence infrared (IR) transmission data show little if any difference from corresponding results for bulk single crystals. For a layer formed on a metallic substrate, IR reflection-absorption spectroscopy (IRRAS) shows longitudinal-optic (LO) modes that are red-shifted by approximately 37 cm-1 relative to those of a bulk crystal. Evidence is also seen for a bonding interaction at the Ga2O3/Au interface following heating in room air. Polarization-modulated IRRAS has been used to study the adsorption of pyridine under steady-state conditions in ambient pressures as high as approximately 5 Torr. The characteristic nu19b and nu8a modes of adsorbed pyridine exhibit little or no shift from the corresponding gas-phase values. This indicates that the surface is only weakly acidic, consistent with the theoretical prediction that singly unsaturated octahedral Ga sites are the only reactive cation sites on the NR surface. However, evidence for adsorption at defect sites is seen in the form of more strongly shifted modes that saturate in intensity at low pyridine coverage. The effect of H atoms, formed by thermal cracking of H2, has also been studied. No Ga-H or O-H bonds are observed on the pristine NR surface. This suggests that the previously reported presence of such species on Ga2O3 powders heated in H2 is a result of a partial reduction of the oxide surface. The heat of adsorption of atomic H on the pristine beta-Ga2O3(100) surface at 0 K is computed to be -1.79 eV per H at saturation (average of Ga-H and O-H sites), whereas a value of +0.45 eV per H is found for the dissociative adsorption of H2. This suggests that rapid recombinative desorption of H2 may limit the coverage of chemisorbed H on this surface.  相似文献   

17.
The crystal structure of bulk microcrystalline material obtained by interaction of two rigid building blocks, namely dirhodium(ii) tetra(trifluoroacetate), [Rh2(O2CCF3)4], and bis(4'-pyridyl)diphenylsilane, (C6H5)2Si(C5H4N)2, has been solved ab initio using X-ray powder diffraction data. The title product of the 1 [ratio] 1 composition, [Rh2(O2CCF3)4.(mu2-(C6H5)2Si(C5H4N)2)], is a one-dimensional zigzag polymer built on axial Rh...N interactions averaged at 2.16 A. Its structural characterization complements the previously reported product of the 2:1 composition obtained from the same reaction, namely {[Rh2(O2CCF3)4]2.(mu4-(C6H5)2Si(C5H4N)2)}. The latter has a 2D layered network revealed by the single crystal diffraction study. A combination of powder and single crystal X-ray techniques is shown to be methodologically important and complementary for understanding of product assembling in the system.  相似文献   

18.
A new exchange-Coulomb semiempirical model potential energy surface for the He-N2 interaction has been developed. Together with two recent high-level ab initio potential energy surfaces, it has been tested for the reliability of its predictions of second-virial coefficients and bulk transport phenomena in binary mixtures of He and N2. The agreement with the relevant available measurements is generally within experimental uncertainty for the exchange-Coulomb surface and the ab initio surface of Patel et al. [J. Chem. Phys. 119, 909 (2003)], but with slightly poorer agreement for the earlier ab initio surface of Hu and Thakkar [J. Chem. Phys. 104, 2541 (1996)].  相似文献   

19.
The phenomenon of water adsorption in carbon micropores is examined through the study of water adsorption equilibrium in molecular sieving carbon. Adsorption and desorption isotherms are obtained over a wide range of concentrations from less than 0.1% to beyond 80% of the vapor pressure. Evidence is provided in support of a proposed bimodal water adsorption mechanism that involves the interaction of water molecules with functional groups at low relative pressures and the adsorption of water molecules between graphene layers at higher pressures. Decomposition of the equilibrium isotherm data through application of the extended cooperative multimolecular sorption theory, together with favorable quantitative comparison, provides support for the proposed adsorption mechanism. Additional support is obtained from a multitemperature study of water equilibrium. Temperatures of 20, 50, and 60 degrees C were probed in this investigation in order to provide isosteric heat of adsorption data for water interaction with the carbon molecular sieve. At low loading, the derived isosteric heat of adsorption is estimated to be 69 kJ/mol. This value is indicative of the adsorption of water to functional groups. At higher loading, the isosteric heat of adsorption decreases with increasing loading and approaches the heat of condensation, indicative of adsorption between graphene layers. Further support for the proposed adsorption mechanism is derived from carbon dioxide adsorption experiments on carbon molecular sieve that is preadsorbed with various amounts of water. Significant exclusion of carbon dioxide occurs, and a quantitative analysis that is based on the proposed bimodal water adsorption mechanism is employed in this investigation.  相似文献   

20.
We present equations to calculate the differential and integral enthalpy changes of adsorption for their use in Monte Carlo simulation. Adsorption of a system of N molecules, subject to an external potential energy, is viewed as one of transferring these molecules from a reference gas phase (state 1) to the adsorption system (state 2) at the same temperature and equilibrium pressure (same chemical potential). The excess amount adsorbed is the difference between N and the hypothetical amount of gas occupying the accessible volume of the system at the same density as the reference gas. The enthalpy change is a state function, which is defined as the difference between the enthalpies of state 2 and state 1, and the isosteric heat is defined as the negative of the derivative of this enthalpy change with respect to the excess amount of adsorption. It is suitable to determine how the system behaves for a differential increment in the excess phase adsorbed under subcritical conditions. For supercritical conditions, use of the integral enthalpy of adsorption per particle is recommended since the isosteric heat becomes infinite at the maximum excess concentration. With these unambiguous definitions we derive equations which are applicable for a general case of adsorption and demonstrate how they can be used in a Monte Carlo simulation. We apply the new equations to argon adsorption at various temperatures on a graphite surface to illustrate the need to use the correct equation to describe isosteric heat of adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号