首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the preparation of multiferroic BiFeO3 thin films on ITO coated glass substrates through sol-gel spin coating method followed by thermal annealing and their modification by swift heavy ion (SHI) irradiation. X-ray diffraction and Raman spectroscopy studies revealed amorphous nature of the as deposited films. Rhombohedral crystalline phase of BiFeO3 evolved on annealing the films at 550°C. Both XRD and Raman studies indicated that SHI irradiation by 200 MeV Au ions result in fragmentation of particles and progressive amorphization with increasing irradiation fluence. The average crystallite size estimated from the XRD line width decreased from 38 nm in pristine sample annealed at 550°C to 29 nm on irradiating these films by 200 MeV Au ions at 1 × 1011 ions cm−2. Complete amorphization of the rhombohedral BiFeO3 phase occurs at a fluence of 1 × 1012 ions.cm−2. Irradiation by another ion (200 MeV Ag) had the similar effect. For both the ions, the electronic energy loss exceeds the threshold electronic energy loss for creation of amorphized latent tracks in BiFeO3.  相似文献   

2.
SnO2 thin films grown on glass substrates at 300 °C by reactive thermal evaporation and annealed at 600 °C were irradiated by 120 MeV Ag9+ ions. Though irradiation is known to induce lattice disorder and suppression of crystallinity, we observe grain growth at a certain fluence of irradiation. X-ray diffraction (XRD) revealed the crystalline nature of the films. The particle size estimated by Scherrer’s formula for the irradiated films was in the range 10–25 nm. The crystallite size increases with increase in fluence up to 1×1012 ions?cm?2, whereas after that the size starts decreasing. Atomic force microscope (AFM) results showed the surface modification of nanostructures for films irradiated with fluences of 1×1011 ions?cm?2 to 1×1013 ions?cm?2. The UV–visible spectrum showed the band gap of the irradiated films in the range of 3.56 eV–3.95 eV. The resistivity decreases with fluence up to 5×1012 ions?cm?2 and starts increasing after that. Rutherford Backscattering (RBS) reveals the composition of the films and sputtering of ions due to irradiation at higher fluence.  相似文献   

3.
ABSTRACT

ZnTe (Zinc Telluride) is a potential semiconducting material for many optoelectronic devices like solar cells and back contact material for CdTe-based solar cells. In the present study, ZnTe thin films were prepared by thermal evaporation technique and then irradiated with 120?MeV Si9+ ions at different fluences. These films are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–Visible spectroscopy techniques. XRD study confirms increased crystallinity and grain growth for post-irradiated ZnTe thin films for fluences, up to 1?×?1011 ions cm?2. However, the grain size and crystallinity decreased for higher fluence-exposed samples. SEM images confirm the observed structural properties. Modification of the surface morphology of the film due to the ion irradiation with different fluences is studied. Optical band gap of film is decreased from 2.31?eV (pristine) to 2.17?eV after irradiation of Si9+ ions.  相似文献   

4.
Mustafa Ö  ztas 《中国物理快报》2008,25(11):4090-4092
InP film samples were prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which were atomized with compressed air as carrier gas onto glass substrates at 500°C with different thicknesses of the films. It is found that the resistivity of the polycrystalline films strongly depends on the grain size. It is observed that the grain size of the films increase with the decrease of the energy band gap and strain of the film. The changes observed in the energy band gap and strain related to the film grain size of the films are discussed in detail.  相似文献   

5.
Nanocrystalline Tm3+(5%)-doped BaTiO3 (BT-Tm) has been synthesized by the sol–gel method. The morphology, structure, and optical properties of powders and ceramics were characterized. The average grain size of the gel precursor annealed at 700 and 900 °C was 20 nm and 30 nm, respectively. These powders were single phase and crystallized with a cubic structure while the BT-Tm sintered ceramics were crystallized with the tetragonal BaTiO3 structure. The photoluminescence spectra showed typical transitions of Tm3+ ions and a structure consistent with the Tm3+ ions incorporation in the BaTiO3 crystalline lattice. Thermoluminescence peaks recorded at 300 °C (for annealed samples) or at 230 °C for the ceramic sample were assigned to the recombination of the Tm2+-electron traps located mainly at the surface of the nano-crystals or inside the microcrystals, respectively.  相似文献   

6.
(La0.5Sr0.5)CoO3 (LSCO) thin films have been fabricated on silicon substrate by the pulsed laser deposition method. The effects of substrate temperature and post-annealing condition on the structural and electrical properties are investigated. The samples grown above 650°C are fully crystalline with perovskite structure. The film deposited at 700°C has columnar growth with electrical resistivity of about 1.99×10−3 Ω cm. The amorphous films grown at 500°C were post-annealed at different conditions. The sample post-annealed at 700°C and 10−4 Pa has similar microstructure with the sample in situ grown at 700°C and 25 Pa. However, the electrical resistivity of the post-annealed sample is one magnitude higher than that of the in situ grown sample because of the effect of oxygen vacancy. The temperature dependence of resistivity exhibits semiconductor-like character. It was found that post-annealing by rapid thermal process will result in film cracks due to the thermal stress. The results are referential for the applications of LSCO in microelectronic devices.  相似文献   

7.
Electrical characterization of 10 mol% gadolinia doped ceria (CGO10) films of different thicknesses prepared on MgO(100) substrates by pulsed laser deposition is presented. Dense, polycrystalline and textured films characterized by fine grains (grain sizes < 18 nm and < 64 nm for a 20-nm and a 435-nm film, respectively) are obtained in the deposition process. Grain growth is observed under thermal cycling between 300 and 800°C, as indicated by X-ray-based grain-size analysis. However, the conductivity is insensitive to this microstructural evolution but is found to be dependent on the sample thickness. The conductivity of the nanocrystalline films is lower (7.0×10?4  S/cm for the 20-nm film and 3.6×10?3  S/cm for the 435-nm film, both at 500°C) than that of microcrystalline, bulk samples ( $6\times 10^{-3}$  S/cm at 500°C). The activation energy for the conduction is found to be 0.83 eV for the bulk material, while values of 1.06 and 0.80 eV are obtained for the 20-nm film and the 435-nm film, respectively. The study shows that the ionic conductivity prevails in a broad range of oxygen partial pressures, for example down to about 10 ?26  atm at 500°C.  相似文献   

8.
Thin films of spinel LiMn2O4 have been fabricated using a metallorganic precursor. Crystalline films have been deposited on Au substrates to exhibit as the cathode in rechargeable thin film lithium batteries. The nucleation and growth of spinel LiMn2O4 crystallites were investigated with heat treatment of the deposited thin films. Film capacity density as high as 22 μAh/cm2 was measured for LiMn2O4. The film heat treated at 700 °C were cycled electrochemically up to 30 cycles against Li metal without any degradation of the capacity. There were neither open area nor amorphous layers which prevent the Li+ions transfer at the boundaries in the LiMn2O4 thin film. The microscopic study revealed that (111) planes in the two grains directly bonded at the grain boundary which could proceed the lithium ion intercalation or deintercalation smoothly.  相似文献   

9.
Barium strontium titanate (BST) films on single-crystal sapphire substrates are prepared by chemical solution deposition upon annealing at temperatures T = 700, 850, and 1000°C. The structure of the BST films is investigated using transmission electron microscopy, high-resolution electron microscopy, and x-ray diffraction. It is established that, upon annealing at T = 700 and 850°C, the film crystallizes in the tetragonal phase of the (Ba0.7Sr0.3)TiO3 perovskite without texture and transition layers. The mean grain sizes are 17 and 37 nm, respectively. However, an increase in the annealing temperature to 1000°C brings about a decrease in the mean grain size to 25 nm and the appearance of additional phases due to the interaction at the film-substrate interface.  相似文献   

10.
Bi3TiNbO9:Er3+:Yb3+ (BTNEY) thin films were fabricated on fused silica by pulsed laser deposition. It was demonstrated that different laser fluence and substrate temperature during growth of BTNEY upconversion photoluminescence (UC-PL) samples control the film’s grain size and hence influences the UC-PL properties. The average grain size of BTNEY thin films deposited on fused silica substrates with laser fluence 4, 5, 6, and 7 J/cm2 are 30.8, 35.9, 40.6, and 43.4 nm, respectively. The 525 nm emission intensities increase with the deposition laser fluence and the emission intensities of BTNEY thin film deposited under 700 and 600 °C are almost 24 and 4 times, respectively, as strong as those of samples under 500 °C. The grain size of BTNEY thin film increases with the increasing temperature. UC-PL of BTNEY films is enhanced by increasing grain size of the films.  相似文献   

11.
A tin-doped indium oxide (ITO) film on a SiO2 substrate was prepared by photo-irradiation of spin-coated nanoparticles using a Xe excimer lamp and a KrF excimer laser. The effects of the excimer lamp and the excimer laser on the resistivity, mobility, and carrier concentration of the film were investigated. To better understand how to control the microstructure of the film, we investigated the effect of thickness on the resistivity of a film prepared by the two-step process, and found that the resistivity was higher in a thicker film. Using two-step irradiation plus one-step KrF irradiation in N2 at room temperature, we produced an ITO film with lowest resistivity of any in this study. The electrical resistivity of this film was 5.94×10−4 Ω cm. On the other hand, when using a simple thermal process, the resistivity of a film sintered at 500°C in N2 was 4.10×10−3 Ω cm. The differences in resistivity are discussed on the basis of the microstructure of the films using atomic force microscopy and Hall measurements.  相似文献   

12.
Irradiation of EP-823 (16Cr12MoWsiVNbB) ferritic-martensitic steel with 7-MeV Ni++ ions and with 30- and 70-keV He+ ions at a temperature of 500°C was followed by an increase in the microhardness, which was due to both radiation point defects and changes in the phase composition and the dislocation structure of the steel. It was found that the dependence of the largest relative increase in the microhardness on the concentration of radiation-induced point defects in the near-surface region of the steel under irradiation with different ions correlated with an analogous dependence of the surface segregation of silicon and chromium.  相似文献   

13.
Modified chemical bath deposited (MCBD) bismuth sulphide (Bi2S3) thin films’ structural, optical and electrical properties are engineered separately by annealing in air for 1 h at 300 °C and irradiating with 100 MeV Au swift heavy ions (SHI) at 5 × 1012 ions/cm2 fluence. It is observed that the band gap of the films gets red shifted after annealing and irradiation from pristine (as deposited) films. In addition, there is an increase in the grain size of the films due to both annealing and irradiation, leading to the decrease in resistivity and increase in thermoemf of the films. These results were explained in the light of thermal spike model.  相似文献   

14.
Silicon wafers were implanted in 〈111〉-direction with boron and phosphorus ions of 7 keV at room temperature. Doses between 1012 and 1018 ions/cm2 were applied. After successive annealing steps the electrical properties of the implanted layers have been determined by Hall effect and sheet resistivity measurements. The annealing characteristics of the implants depend on ion dose and species. Three annealing stages can be distinguished: (I) the temperature range below 500°C, (II) 500—700°C, (III) 700—900°C.

After annealing at 90°C the apparent electrical yield is proportional to dose for all implants and amounts to approx. 80 per cent for boron and 40 per cent for phosphorus.

Sheet resistivity vs. dose curves were derived for the annealing temperature of 400°C and used for the fabrication of position sensitive detectors. The position characteristics were found to be linear within ~1 per cent for resistive layers as long as 20 cm.  相似文献   

15.
This paper reports the use of graphite thin films as a counter electrode of a solid state photoelectrochemical cells of ITO/TiO2/PVC-LiClO4/graphite. The photoelectrochemical cells material was a screen-printed layer of titanium dioxide onto an ITO-covered glass substrate which was used as a working electrode of the device. The solid electrolyte used was PVC-LiClO4 that was prepared by solution casting technique. The graphite films which serve as a counter electrode were prepared onto glass substrate by electron beam evaporation technique at substrate temperatures variation of 25, 50, 100, 150 and 200 °C. The dependence of sheet resistance and surface morphology of the graphite films on substrate temperature were studied. The films deposited at 25 °C shows the smoothest surface morphology and the smallest grain size. Bigger grain size, rougher surface morphology of graphite film counter electrode. The current-voltage characteristics of four devices utilising the graphite counter electrode with different substrate temperature in dark as well as under illumination of 100 mWcm−2 light from a tungsten halogen lamp were recorded at room temperature and at 50 °C, respectively. It was found that the photovoltaic parameters of the device such as short-circuit current density, Jsc and open-circuit voltage, Voc increases with the decreasing average grain size of the graphite counter electrode. The device whose graphite film counter electrode was deposited onto the glass substrate at 25 °C gave the highest Jsc of 0.32 μA/cm2 and Voc of 117 mV, respectively.  相似文献   

16.
Thin film of LiNi0.8Co0.2O2 (LNCO) has been prepared by Pulsed Laser Deposition (PLD) technique at various post annealing temperatures. XRD results of LNCO thin film deposited on both Pt and Si substrates reveal relatively good crystalline nature at 500 °C which is in good agreement with the electrochemical results. ICP-AES composition analysis indicates 10 to 5% Li loss in the post annealed (400–700 °C) LNCO/Pt thin films; however the as prepared LNCO/Pt films show 17% excess of Li which are comparable with the LNCO target results. SEM analysis indicates phase separation at 600 °C and porous nature at 700–800 °C for LNCO/Pt films. Cyclic voltammetry (CV) scans of LiNi0.8Co0.2O2 film post annealed at 500 °C show a pair of main cathodic and anodic peaks at 3.64 and 3.4 V, respectively with a narrow peak separation reveals good stability upon cycling. Whereas the LNCO films annealed at 600 °C and 700 °C indicate an additional anodic peak at lower potential besides a pair of major peaks which may be due to the phase separated morphology as evidenced from SEM analysis. Based on the structural and electrochemical results, a lithium-ion micro cell has been constructed with LNCO/Li3.4V0.6Si0.4O4(LVSO)/SnO configuration with the thickness of 1.535 µm and its electrochemical properties have been studied.  相似文献   

17.
C.T. Ni  K.Z. Fung 《Solid State Ionics》2009,180(11-13):900-903
Deposition of LiCoO2 thin film using chitosan-added precursor solution was found to be a cost-effective way to fabricate cathode for Li-ion thin film batteries. The structures and electrochemical performance of such LiCoO2 cathode were characterized by using an X-ray diffracotmeter (XRD), FTIR and charge–discharge tests. After annealing at ca. 500 °C, the results of XRD showed that the LiCoO2 gel started to crystallize and showed hexagonal phase with a space group of R3?m. The enhanced stability of the precursor solution by the addition of chitosan is attributed to the complexation between metal ions and the ?NH2 groups of chitosan.The electrochemical behaviour for the deposited films calcined at 700 °C for 4 h was also characterized by charge–discharge test. The result revealed that the film deposited from chitosan-containing precursor solution possesses an initial discharge capacity of 129 mAh g? 1.  相似文献   

18.
We report on the deposition of SrBi2Nb2O9 and Sr1-xNaxBi2-xTexNb2O9 ferroelectric thin films on Pt/TiO2/SiO2/(100)Si substrates using the pulsed laser deposition technique. Deposition on substrates heated to 600-700 °C produces {11l} film texture and dense films with grain sizes up to about 500 nm. The recrystallization at 700 °C of amorphous films deposited at lower temperatures enhances the contribution of the {100} and {010} orientations. These films show smaller grain size, namely 50-100 nm. {11l}-oriented Sr1-xNaxBi2-xTexNb2O9 films have remnant polarization Prۆ 7C/cm2, a coercive field Ec䏐 kV/cm and dielectric constant, )𪓴. The low value of Pr is probably related to the low fraction of grains with the ferroelectric axis in the direction of the applied field, E. The recrystallized films have more grains with the ferroelectric axis parallel to E; however, they have a low resistivity which so far has prevented electrical characterization.  相似文献   

19.
《Solid State Ionics》2006,177(3-4):389-393
Dense BaCe0.8Sm0.2O2.90 (BCSO) thin films were successfully fabricated on porous NiO–BCSO substrates by dry pressing process. As characterized by scanning electron microscope, the BCSO films were about 50 μm. With Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) as cathodes, single cells were tested at 600 and 700 °C with humidified (3% HB2O) hydrogen as fuel and oxygen as oxidant. The open circuit voltage of 1.049 V at 600 °C and 1.032 V at 700 °C were achieved, indicating negligible gas permeation through the BCSO thin films. Maximum power densities of 132 and 340 mW/cm2 were obtained at 600 and 700 °C, respectively. The impedance measurements at open circuit conditions showed that there were two rate-limiting processes for the electrode reactions and that the cell performances were essentially determined by the electrode polarization resistances at temperature below 650 °C, which implied that it was essential to reduce the electrode polarization by developing novel electrode materials to improve the performance of ITSOFC based on BCSO electrolyte. Conductivities of BCSO under the cell operating circumstances were obtained as 0.00416, 0.00662 and 0.00938 Scm 1 at 500, 600 and 700 °C, respectively. The activation energy of BCSO conductivity was calculated as 29.5 and 43.8 kJ/mol for the temperature range of 550–700 °C and of 400–550 °C, respectively. Endurance test was firstly carried out with 75 μm BCSO electrolyte at 650 °C at the operating voltage of 0.7 V and current density about 0.12 A/cm2. Both voltage and current density remained stable for 1000 min.  相似文献   

20.
The effect of high electronic energy deposition on the structure, surface topography, optical properties, and electronic structure of cadmium sulfide (CdS) thin films have been investigated by irradiating the films with 100 MeV Ag+7 ions at different ion fluences in the range of 1012–1013 ions/cm2. The CdS films were deposited on glass substrate by thermal evaporation, and the films studied in the present work are polycrystalline with crystallites preferentially oriented along (002)-H direction. It is shown that swift heavy ion (SHI) irradiation leads to grain agglomeration and hence an increase in the grain size at low ion fluences. The observed lattice compaction was related to irradiation induced polygonization. The optical band gap energy decreased after irradiation, possibly due to the combined effect of change in the grain size and in the creation of intermediate energy levels. Enhanced nonradiative recombination via additional deep levels, introduced by SHI irradiation was noticed from photoluminescence (PL) analysis. A shift in the core levels associated with the change in Fermi level position was realized from XPS analysis. The chemistry of CdS film surface was studied which showed profound chemisorption of oxygen on the surface of CdS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号