首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclotriphosphazene derivatives containing a P-NHR group in the side-chain react in the presence of a strong base to form stable intermolecular bridged products. Reaction of sodium hydride with mono-spiro cyclophosphazene derivatives having a P-NH group, N(3)P(3)Cl(4)[O(CH(2))(3)NH], (1a) or N(3)P(3)Cl(4)[CH(3)N(CH(2))(3)NH], (1b) leads to formation of bis-cyclophosphazenes bridged with an eight-membered cyclophosphazene ring in an ansa arrangement (2a, 2b) whereas reaction of sodium hydride with mono-amino cyclophosphazene derivatives [N(3)P(3)Cl(5)(NHR), R = n-hexyl, 3a; i-Pr, 3b; Ph, 3c] give bis-cyclophosphazenes bridged with a four-membered cyclophosphazane ring in a spiro arrangement (4a-c). In the latter reaction P-O-P bridged compounds (5a-c) were also obtained as a result of hydrolysis reactions associated with the amount of moisture in the solvent tetrahydrofuran. In addition, it was found that reaction of a mixture of cyclotriphosphazene with either mono spiro compound, (1a) or (1b), in the presence of sodium hydride lead to formation of the first examples of asymmetrically-bridged cyclophosphazenes (6a-b).  相似文献   

2.
Nucleophilic substitution reactions of N(3)P(3)Cl(4)[O(CH(2))(2)NCH(3)], (1) with the sodium salts of mono- and di-functional alcohols [methanol (2), phenol (3), tetraethyleneglycol (4) and 1,3-propanediol (5)] were carried out in order to investigate a possible directing effect of the spiro O-moiety on the formation of mono-substituted (2a, 3a), non-geminal di-substituted (2c, 3c) and ansa (4a, 5a) derivatives. Compounds isolated from the reactions were characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy and X-ray crystallographic analysis showed that the substituent OR in compounds (2a, 3a and 2c, 3c) and the ansa-ring in compounds (4a, 5a) formed cis to the P-O moiety of the exocyclic [O(CH(2))(2)NCH(3)] spiro ring. The formation of products (2a-d, 3a-d, 4a, 5a and 5b) was quantified from the (31)P NMR spectra of the reaction mixtures, which showed an overwhelming preference for derivatives (2a, 3a, 2c, 3c, 4a, 5a) with the substituent cis to the P-O moiety of the exocyclic spiro ring (2a, 3a, 2c, 3c, 4a, 5a), except for reaction with 1,3-propanediol where the six-membered ring spiro derivative (5b) was about three times more abundant than the eight-membered ring ansa-derivative (5a). Overwhelming formation of products with the substituent cis to the exocyclic P-O moiety is proof that the cation-assisted mechanism is responsible for the stereo-selectivity in the reactions with alkoxides.  相似文献   

3.
Reactions of pentaerythritol with hexachlorocyclotriphosphazene, N3P3Cl6, and gem-disubstituted cyclotriphosphazene derivatives, N3P3Cl4R2 [R = Ph, NHBu(t) or (OCH2CF2CF2CH2O)0.5] gave a series of pentaerythritol-bridged derivatives linked spiro-spiro, spiro-ansa and ansa-ansa. The structures and stereogenic properties of the products were characterised by X-ray crystallography and 31P NMR spectroscopy on addition of the chiral solvating agent, (S)-(+)-2,2,2-trifluoro-1-(9-anthryl)ethanol. Molecules with spiro-spiro and spiro-ansa bridged gem-disubstituted cyclophosphazenes [R = Ph, NHBu(t) or (OCH2CF2CF2CH2O)0.5] are found to be chiral and exist as racemates. Molecules with ansa-ansa bridged cyclophosphazenes [R = Cl or (OCH2CF2CF2CH2O)0.5] have been characterised for the first time and are shown to have meso configurations. Analysis of crystal structure data shows that the six-membered chair form of the spiro rings and the eight-membered boat-chair form of the ansa rings in the bridged compounds are similar to analogous spiro and ansa exocyclic ring conformations of 1,3-propanedioxy-derivatives of cyclophosphazenes.  相似文献   

4.
Nucleophilic substitution reactions of N(3)P(3)Cl(4)[NH(CH(2))(3)NMe] (1) and N(3)P(3)Cl(4)[NH(CH(2))(3)O] (2) with mono-functional alcohols (methanol, 2,2,2-trifluoroethanol, phenol) and a secondary amine (pyrrolidine) were used to investigate the relationship between the incoming nucleophile and the proportions of products with substituents that are cis or trans to the spiro NH moiety. The reaction products were characterized by elemental analysis, mass spectrometry, (1)H and (31)P NMR spectroscopy and the configurational isomers by X-ray crystallography. Six products have been characterised with the substituent cis to the spiro NH group for the alcohol (methanol, phenol) and pyrrolidine derivatives of both compounds 1 and 2, compared to just one derivative with the substituent trans to the spiro NH group, that for the pyrrolidine derivative of compound 2. For each reaction the relative proportions of cis and trans isomers were determined by (31)P NMR measurements of the reaction mixtures. It was found that the reactions of compound 1 with all three alcohols and of compound 2 with methanol lead to exclusive formation of isomers with the substituent cis to the NH moiety, whereas all other reactions lead to mixtures of cis and trans isomers in different ratios under standard reaction conditions. However, when crown ether is included in the reaction medium for the reactions of compound 2 with both 2,2,2-trifluoroethanol and phenol, it is found that only cis isomers are formed. All these results are rationalised in terms of the competition between at least two effects; the cis-directing effect by hydrogen bonding of the incoming nucleophile to the spiro N-H group already present on the cyclophophazene ring and the cis-directing effect of the sodium cation coordinating to the oxygen lone pairs of the P-O moiety of the spiro ring.  相似文献   

5.
The reactions of fluorophosphazenes, endo ansa FcCH(2)P(S)(CH(2)O)(2)[P(F)N](2)(F(2)PN) (1) (Fc = ferrocenyl) and spiro [RCH(2)P(S)(CH(2)O)(2)PN](F(2)PN)(2) (R = Fc (2), C(6)H(5) (3)], with dilithiated diols have been explored. The study resulted in the formation of the first examples of ansa-spiro substituted fluorinated cyclophosphazenes as well as a bisansa substituted fluorophosphazene. The bisansa compound [1,3-[FcCH(2)P(S)(CH(2)O)(2)]][1,5-[CH(2)(CH(2)O)(2)]]N(3)P(3)F(2) (4) was found to be nongeminaly substituted with both the ansa rings in cis configuration, which is in stark contrast to the observations on cyclic chlorophosphazenes where geminal bisansa formation has been observed. The ansa-spiro compounds (5-7) underwent the ansa to spiro transformation leading to dispiro compounds in the presence of catalytic amounts of CsF at room temperature. Two of the ansa-spiro compounds, endo-[3,5-[FcCH(2)P(S)(CH(2)O)(2)]][1,1-[CH(2)(CH(2)O)(2)]]N(3)P(3)F(2) (5) and endo-[3,5-[FcCH(2)P(S)(CH(2)O)(2)]][1,1-[FcCH(2)P(S)(CH(2)O)(2)]]N(3)P(3)F(2) (6), were structurally characterized, and the crystal structures indicate boat-chair conformation as well as crown conformation for the eight-membered ansa rings. Weak C-H.F-P interactions observed in the crystal structures of the ansa-spiro substituted fluorophosphazene derivatives have been analyzed and compared with C-H.F-P interactions of other fluorinated phosphazenes and thionyl phosphazenes.  相似文献   

6.
The reactions of [N(3)P(3)Cl(6)] with one, two, or three equivalents of the difunctional 1,2-closo-carborane C(2)B(10)H(10)[CH(2)OH](2) and K(2)CO(3) in acetone have been investigated. These reactions led to the new spiro-closo-carboranylphosphazenes gem-[N(3)P(3)Cl(6-2n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (1), 2 (2)) and the first fully carborane-substituted phosphazene gem-[N(3)P(3)[(OCH(2))(2)C(2)B(10)H(10)](3)] (3). A bridged product, non-gem-[N(3)P(3)Cl(4)[(OCH(2))(2)C(2)B(10)H(10)]] (4), was also detected. The reaction of the well-known spiro derivatives [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)] and [N(3)P(3)Cl(4)(O(2)C(12)H(8))] with the same carborane-diol and K(2)CO(3) in acetone gave the new compounds gem-[N(3)P(3)(O(2)C(12)H(8))(3-n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (5) or 2 (6), respectively), without signs of intra- or intermolecularly bridged species. Upon treatment with NEt(3) in acetone, compound 5 was converted into the corresponding nido-carboranylphosphazene. However, the reaction of gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5) with NEt(3) in ethanol instead of acetone proceeded in a different manner to give the new compound (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7). For compounds with two 2,2'-dioxybiphenyl units, gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5), (NHEt(3))[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(9)H(10)]] (8), and (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7), a mixture of different stereoisomers may be expected. However, for 5 and 7 only the meso compounds seem to be formed, with the same (R,S)-configuration as in the precursor [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)]. The reaction of 5 to give 8 seems to proceed with a change of configuration at one phosphorus center, giving a racemic mixture. The crystal structures of the nido-carboranylphosphazenes 7 and 8 have been confirmed by X-ray diffraction methods.  相似文献   

7.
Fluorinated ansa substituted cyclophosphazenes endo-FcCH(2)P(S)(CH(2)O)(2)[P(F)N](2)(F(2)PN) [Fc = ferrocenyl] (1) and exo-FcCH(2)P(S)(CH(2)O)(2)[P(F)N](2)(F(2)PN) (2) readily transform to the spirocyclic compound [FcCH(2)P(S)(CH(2)O)(2)PN](F(2)PN)(2) (3) not only in the presence of CsF but also with non-fluorinated bases such as Cs(2)CO(3), K(2)CO(3), KOBu(t), Et(3)N, DABCO, DBN, and DBU. The analogous tetrachloro ansa compound exo-FcCH(2)P(S)(CH(2)O)(2)[P(Cl)N](2)(Cl(2)PN) (5), however, did not transform to the chlorinated spiro compound (6) in the presence of these bases. With excess of CsF, P-Cl bonds of 5 were found to undergo fluorination leading to the formation of 2, which transformed to spirocyclic compound 3. Time dependent (31)P NMR spectroscopy was used to monitor this transformation. Crystal structure studies on the ansa substituted compounds 4 and 5 have shown weak bonding interactions involving C-H...Cl, C-H...O, and C-H...S interactions.  相似文献   

8.
The S-aryl substituted thionylphosphazene (Cl(2)PN)(2)[4-t-BuC(6)H(4)(O)SN] (1) was prepared by Friedel-Craft's reaction of NSOCl(NPCl(2))(2) with tert-butylbenzene. When it reacted with excess KSO(2)F at 110 degrees C, the P-Cl bonds of 1 were fluorinated, yielding the tetrafluorothionylphosphazene, (F(2)PN)(2)[4-t-BuC(6)H(4)(O)SN] (2). An equimolar reaction of 2 with dilithiated 1,3-propanediol in THF at -78 degrees C resulted in the formation of the ansa-substituted compound CH(2)(CH(2)O)(2)[FPN](2)[4-t-BuC(6)H(4)(O)SN] (3). The crystal structures of 2 and 3 were determined. In 3 the ansa ring is trans on the PNS heterocycle with respect to the aryl group. Reaction of 2 with the disiloxane (CF(2)CH(2)OSiMe(3))(2), in the presence of catalytic amounts of CsF in THF at 90 degrees C, resulted in the formation of the dispiro compound [(CF(2)CH(2)O)(2)PN](2)[4-t-BuC(6)H(4)(O)SN] (4). Compounds 1-4 were characterized by IR, NMR ((1)H, (13)C, (19)F, (31)P), mass spectral, and elemental analyses.  相似文献   

9.
The reactions between (TPP)AlX, where TPP = tetraphenylporphyrin and X = Cl, O(CH(2))(9)CH(3), and O(2)C(CH(2))(6)CH(3), and propylene oxide, PO, have been studied in CDCl(3) and have been shown to give (TPP)AlOCHMeCH(2)X and (TPP)AlOCH(2)CHMeX compounds. The relative rates of ring opening of PO follow the order Cl > OR > O(2)CR, but in the presence of added 4-(dimethylamino)pyridine, DMAP (1 equiv), the order is changed to O(2)CR > OR. From studies of kinetics, the ring opening of PO is shown to be first order in [Al]. Carbon dioxide inserts reversibly into the Al-OR bond to give the compound (TPP)AlO(2)COR, and this reaction is promoted by the addition of DMAP. The coordination of DMAP to (TPP)AlX is favored in the order O(2)C(CH(2))(6)CH(3) > O(2)CO(CH(2))(9)CH(3) > O(CH(2))(9)CH(3). The microstructure of the poly(propylene carbonate), PPC, formed in the reactions between (TPP)AlCl/DMAP and (R,R-salen)CrCl and rac-PO/S-PO/R-PO and CO(2), has been investigated by (13)C [(1)H] NMR spectroscopy. The ring opening of PO is shown to proceed via competitive attack on the methine and methylene carbon atoms, and furthermore attack at the methine carbon occurs with both retention and inversion of stereochemistry. On the basis of these results, the reaction pathway leading to ring opening of PO can be traced to an interchange associative mechanism, wherein coordination of PO to the electrophilic aluminum atom occurs within the vicinity of the Al-X bond (X = Cl, OR, O(2)CR, or O(2)COR). The role of DMAP is two-fold: (i) to labilize the trans Al-X bond toward heterolytic behavior, and (ii) to promote the insertion of CO(2) into the Al-OR bond.  相似文献   

10.
The nitridotungsten(vi) complex NW(N[i-Pr]Ar)(3) (-N, Ar = 3,5-Me(2)C(6)H(3)) reacts with (CF(3)C(O))(2)O followed by ClSiMe(3) to give the isolable trifluoroacetylimido-chloride complex -(NC(O)CF(3))Cl, with oxalyl chloride to give cyanate-dichloride -(OCN)(Cl)(2), and with PCl(5) to give trichlorophosphinimide-dichloride -(NPCl(3))(Cl)(2). The oxo-chloride complex -(O)Cl, obtained from -N upon treatment with pivaloyl chloride, reacts with PCl(5) to give trichloride -(Cl)(3). Synthetic and structural details are reported for the new tungsten trisanilide derivatives.  相似文献   

11.
A novel method for regioselective oxidation of phenols and anisoles has been developed in which dioxiranes, generated in situ from ketones and Oxone, oxidize phenol derivatives in an intramolecular fashion. A series of ketones with electron-withdrawing groups, such as CF(3), COOMe, and CH(2)Cl, were attached to phenols, anisoles, or aryl rings via a C(2) or C(3) methylene linker. In a homogeneous solvent system of CH(3)CN and H(2)O, oxidation of phenol derivatives 1-10 afforded spiro 2-hydroxydienones in 24-55% yields regardless of the presence of other substituents (ortho Me, meta Me or Br) on the aryl ring and the length of the linker. Experimental evidences were provided to support the mechanism that involves a regioselective pi bond epoxidation of aryl rings followed by epoxide rearrangement and hemiketal formation.  相似文献   

12.
The first examples of ring-closing metathesis (RCM) reactions of a series of terminal alkene-derived cyclic phosphazenes have been carried out. The tetrakis-, hexakis-, and octakis(allyloxy)cyclophosphazenes (NPPh(2))(NP(OCH(2)CH=CH(2))(2))(2) (1), N(3)P(3)(OCH(2)CH=CH(2))(6) (2), and N(4)P(4)(OCH(2)CH=CH(2))(8) (3) and the tetrakis(allyloxy)-S-phenylthionylphosphazene (NS(O)Ph)[NP(OCH(2)CH=CH(2))(2)](2) (4) were prepared by the reactions of CH(2)=CHCH(2)ONa with the cyclophosphazenes (NPPh(2))(NPCl(2))(2), N(3)P(3)Cl(6), and N(4)P(4)Cl(8) and the S-phenylthionylphosphazene (NS(O)Ph)(NPCl(2))(2). The reactions of 1-4 with Grubbs first-generation olefin metathesis catalyst Cl(2)Ru=CHPh(PCy(3))(2) resulted in the selective formation of seven-membered di-, tri-, and tetraspirocyclic phosphazene compounds (NPPh(2))[NP(OCH(2)CH=CHCH(2)O)](2) (5), N(3)P(3)(OCH(2)CH=CHCH(2)O)(3) (6), and N(4)P(4)(OCH(2)CH=CHCH(2)O)(4) (7) and the dispirocyclic S-phenylthionylphosphazene compound (NS(O)Ph)[NP(OCH(2)CH=CHCH(2)O)](2) (8). X-ray structural studies of 5-8 indicated that the double bond of the spiro-substituted cycloalkene units is in the cis orientation in these compounds. In contrast to the reactions of 1-4, RCM reactions of the homoallyloxy-derived cyclophosphazene and thionylphosphazene (NPPh(2))[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (9) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (10) with the same catalyst resulted in the formation of 11-membered diansa compounds NPPh(2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (11) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (13) and the intermolecular doubly bridged ansa-dibino-ansa compounds 12 and 14. The X-ray structural studies of compounds 11 and 13 indicated that the double bonds of the ansa-substituted cycloalkene units are in the trans orientation in these compounds. The geminal bis(homoallyloxy)tetraphenylcyclotriphosphazene [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CH(2))(2)] (15) upon RCM with Grubbs first- and second-generation catalysts gave the spirocyclic product [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)] (16) along with the geminal dibino-substituted dimeric compound [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)(2)PN][NPPh(2)](2) (17) as the major product. The dibino compound 17, upon reaction with the Grubbs second-generation catalyst, was found to undergo a unique ring-opening metathesis reaction, opening up the bino bridges and partially converting to the spirocyclic compound 16.  相似文献   

13.
The syntheses of tantalum derivatives with the potentially tridentate diamido-N-heterocyclic carbene (NHC) ligand are described. Aminolysis and alkane elimination reactions with the diamine-NHC ligands, (Ar)[NCN]H(2) (where (Ar)[NCN]H(2) = (ArNHCH(2)CH(2))(2)(C(3)N(2)); Ar = Mes, p-Tol), provided complexes with a bidentate amide-amine donor configuration. Attempts to promote coordination of the remaining pendent amine donor were unsuccessful. Metathesis reactions with the dilithiated diamido-NHC ligand ((Ar)[NCN]Li(2)) and various Cl(x)Ta(NR'(2))(5-)(x) precursors were successful and generated the desired octahedral (Ar)[NCN]TaCl(x)(NR'(2))(3-)(x) complexes. Attempts to prepare trialkyl tantalum complexes by this methodology resulted in the formation of an unusual metallaaziridine derivative. DFT calculations on model complexes show that the strained metallaaziridine ring forms because it allows the remaining substituents to adopt preferable bonding positions. The calculations predict that the lowest energy pathway involves a tantalum alkylidene intermediate, which undergoes C-H bond activation alpha to the amido to form the metallaaziridine moiety. This mechanism was confirmed by examining the distribution of deuterium atoms in an experiment between (Mes)[NCN]Li(2) and Cl(2)Ta(CD(2)Ph)(3). The single-crystal X-ray structures of (p)(-Tol)[NCNH]Ta(NMe(2))(4) (3), (Mes)[NCNH]Ta=CHPh(CH(2)Ph)(2) (4), (p)(-Tol)[NCN]Ta(NMe(2))(3) (7), (Mes)[NCCN]Ta(CH(2)(t)Bu)(2) (11), and (Mes)[NCCN]TaCl(CH(2)(t)Bu) (14) are included.  相似文献   

14.
2,5-Dimethoxycarbonyl[60]fulleropyrrolidine (1) is acylated with various chlorocarbonyl compounds to give fullerene derivatives with the general formula C(60)(MeOOCCH)(2)NC(O)R, R = (CH(2))(5)Br, (CH(2))(8)C(O)Cl (3), (CH(2))(4)C(O)Cl, or cis-C(6)H(4)(C(O)Cl. The monoacylated sebacoyl derivative 3 readily reacts with alcohols and amines such as methanol, diethylamine, glycine methyl ester, and aza-18-crown-6 through the remaining chlorocarbonyl group. Chromatography of 3 on silica gel converts it into the corresponding acid C(60)(MeOOCCH)(2)NC(O)(CH(2))(8)COOH (4). Treating 4 with PCl(5) regenerates the precursor 3 quantitatively. Piperazine reacts with 4 in the presence of DCC and BtOH to form a bisfullerene derivative in which two sebacoyl chains and the piperazine act as the bridge between two molecules of 1. Other molecules with multifunctional groups react with 4 similarly to form multifullerene derivatives. NMR data indicate that the rotation of the relatively bulky phthaloyl group is hindered around the amide bond N [bond] C(O), the rotation barrier of which is 15.06 kcal/mol. The relative stereochemistry of the 2,5-dimethoxycarbonyl groups is established by (1)H NMR spectra and further confirmed by resolution of the enantiomeric 2,5-trans-isomer of the starting material 1.  相似文献   

15.
Chelate-controlled synthesis of racemic ansa-zirconocenes   总被引:1,自引:0,他引:1  
The reaction of Zr[PhN(CH(2))(3)NPh]Cl(2)(THF)(2) (5) with lithium ansa-bis-indenyl reagents Li(2)[XBI](Et(2)O) (XBI = (1-indenyl)(2)SiMe(2) (SBI, 7a), (2-methyl-1-indenyl)(2)SiMe(2) (MSBI, 7b), (2-methyl-4,5-benz-1-indenyl)(2)SiMe(2) (MBSBI, 7c), (2-methyl-4-phenyl-1-indenyl)(2)SiMe(2) (MPSBI, 7d), and 1,2-(1-indenyl)(2)ethane (EBI, 7e)) affords rac-(XBI)Zr[PhN(CH(2))(3)NPh] (8a-e) in high yield. The meso isomers were not detected by (1)H NMR. X-ray crystallographic studies show that the Zr[PhN(CH(2))(3)NPh] rings in 5, 8a, 8c, and (C(5)H(5))(2)Zr[PhN(CH(2))(3)NPh] (10) adopt twist conformations that position the N-Ph groups on opposite sides of the N-Zr-N plane. This conformation complements the metallocene structures of rac-8a-e but would destabilize the corresponding meso isomers. It is proposed that the Zr[PhN(CH(2))(3)NPh] ring adopts a similar twist conformation in the stereodetermining transition state for addition of the second indenyl ring in these reactions, which leads to a preference for rac products. The results of metallocene syntheses from other Zr amide precursors support this proposal. 8a-e are converted to the corresponding rac-(XBI)ZrCl(2) complexes (9a-e) by reaction with HCl.  相似文献   

16.
The reactions of the water-soluble chelating phosphines 1,2-bis(bis(hydroxyalkyl)phosphino)ethane (alkyl = n-propyl, DHPrPE; n-butyl, DHBuPE; n-pentyl, DHPePE) with FeCl(2).4H(2)O and FeSO(4).7H(2)O were studied as routes to water-soluble complexes that will bind small molecules, dinitrogen in particular. The products that form and their stereochemistry depend on the solvent, the counteranion, and the alkyl chain length on the phosphine. In alcoholic solvents, the reaction of FeCl(2).4H(2)O with 2 equiv of DHBuPE or DHPePE gave trans-Fe(L(2))(2)Cl(2). The analogous reactions in water with DHBuPE and DHPePE gave only cis products, and the reaction of FeSO(4).7H(2)O with any of the phosphines gave only cis-Fe(L(2))(2)SO(4). These results are interpreted as follows. The trans stereochemistry of the products from the reactions of FeCl(2).4H(2)O in alcohols is suggested to be the consequence of the trans geometry of the Fe(H(2)O)(4)Cl(2) complex, i.e., substitution of the water molecules by the phosphines retains the geometry of the starting material. The formation of cis-Fe(DHPrPE)(2)Cl(2) is an exception to this result because the coordination of two -OH groups forms two six-membered rings, as shown in the X-ray structure of the molecule. DHBuPE and DHPePE reacted with FeSO(4).7H(2)O in water to initially yield cis-Fe(P(2))(2)SO(4) compounds, but subsequent substitution reactions occurred over several hours to give sequentially trans-Fe(DHBuPE)(2)(H(2)O)(SO(4)) and then trans-[Fe(DHBuPE)(2)(H(2)O)(2)]SO(4). The rate constants and activation reactions for these aquation reactions were determined and are consistent with dissociatively activated mechanisms. The cis- and trans-Fe(L(2))(2)X (X = (Cl)(2) or SO(4)) complexes react with N(2), CO, and CH(3)CN to yield trans complexes with bound N(2), CO, or CH(3)CN. The crystal structures of the cis-Fe(DHPrPE)(2)SO(4), trans-Fe(DHPrPE)(2)(CO)SO(4), trans-Fe(DHBuPE)(2)Cl(2), trans-[Fe(DHBuPE)(2)(CO)(Cl)][B(C(6)H(5))(4)], trans-Fe(DMeOPrPE)(2)Cl(2), trans-Fe(DMeOPrPE)(2)Br(2), and trans-[Fe(DHBuPE)(2)Cl(2)]Cl complexes are reported. As expected from using water-soluble phosphines, the complexes reported herein are water soluble (generally greater than 0.5 M at 23 degrees C).  相似文献   

17.
The reactions of diphenoxyphosphoryl chloride ((PhO) 2 P(O)Cl) and different chlorophosphonium salts ([R 3 PCl]X, R = (CH 3 ) 2 N, pyrrolidine, X = PF 6 m , BF 4 m ), respectively, with 7-aza-1-hydroxybenzotriazole (HOAt), 1-hydroxybenzotriazole (HOBt), hydroximinomalonitrile (HOxDCO), and ethyl hydroximinocyanoacetate (HOxO) are described. The structures of the new compounds, which are useful coupling reagents for epimerization-free peptide segment condensation, are discussed on the basis of their 1 H, 13 C, 31 P NMR, and IR spectra. The reactions of (PhO) 2 P(O)Cl lead to mixtures of O - and N -phosphorylated isomers of varying ratios. Contrary, reactions of chlorophosphonium salts yield exclusively one isomer.  相似文献   

18.
Pentavalent uranium complexes of the formula U(V)X(2)[N(SiMe(3))(2)](3) (X = F(-), Cl(-), Br(-), N(3)(-), NCS(-)) are accessible from the oxidation of U(III)[N(SiMe(3))(2)](3) through two sequential, one-electron oxidation reactions (halides) and substitution through salt metathesis (pseudohalides). Uranium(v) mixed-halides are also synthesized by successive one-electron oxidation reactions.  相似文献   

19.
The reactions of the cyclic thionylphosphazenes [NSOX(NPCl(2))(2)] (1, X = Cl; 2, X = F) with three oxygen-based nucleophiles of increasing basicity, sodium phenoxide (NaOPh), sodium trifluoroethoxide (NaOCH(2)CF(3)), and sodium butoxide (NaOBu) have been studied. The reaction of 1 and 2 with 4 equiv of NaOPh at 25 degrees C yielded the regioselectively tetrasubstituted species [NSOX{NP(OPh)(2)}(2)] (5d, X = Cl; 6d, X = F). Further reaction of 5d with an additional 2 equiv of NaOPh over several days or at elevated temperatures gave the fully substituted compound [NSO(OPh){NP(OPh)(2)}(2)] (5e), whereas 6d did not react further. The reaction of 1 and 2 with 5 equiv of NaOCH(2)CF(3) yielded in both cases [NSO(OCH(2)CF(3)){NP(OCH(2)CF(3))(2)}(2)] (7e), and similarly reaction with 5 equiv of NaOBu yielded [NSO(OBu){NP(OBu)(2)}(2)] (9e). In all cases, the reactions were monitored by (31)P NMR and (where applicable) (19)F NMR and were found to involve complete substitution at phosphorus via a predominantly vicinal pathway, followed by substitution at sulfur. Substitutional control of the reactions of NaOPh, NaOBu, with 1 and 2 was found to conform to the following general order of reactivity, PCl(2) > PCl(OR) > SOX (X = Cl, F). Although the reaction with NaOCH(2)CF(3) followed the same order of reactivity, a significant enhancement of reaction rate was detected with each equivalent of trifluoroethoxide added. Reaction of 7e with excess NaOCH(2)CF(3) led to elimination of (CF(3)CH(2))(2)O and the formation of the salts Na[NSO(OCH(2)CF(3))NP(OCH(2)CF(3))(2)NP(OCH(2)CF(3))O] (11) and Na[NS(O)O{NP(OCH(2)CF(3))(2)}(2)] (12). Crystals of 6d are triclinic, space group P&onemacr;, with a = 9.789(3) ?, b = 11.393(4) ?, c = 12.079(5) ?, alpha = 107.40(3) degrees, beta = 91.23(3) degrees, gamma = 93.18(3), V = 1283.6(8) ?(3), and Z = 2. Crystals of 5e are monoclinic, space group C2/c, with a = 32.457(3) ?, b = 10.747(1) ?, c = 18.294(2) ?, beta = 110.37(1) degrees, V = 5982.4(9) ?(3), and Z = 8.  相似文献   

20.
The synthesis and characterization of new organosilicon derivatives of N(3)P(3)Cl(6), N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](6) (1), N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](3)[NCH(3)(CH(2))(3)CN](3) (2), and N(3)P(3)[NH(CH(2))(3)Si(OEt)(3)](3)[HOC(6)H(4)(CH(2))CN](3) (3) are reported. Pyrolysis of 1, 2, and 3 in air and at several temperatures results in nanostructured materials whose composition and morphology depend on the temperature of pyrolysis and the substituents of the phosphazenes ring. The products stem from the reaction of SiO(2) with P(2)O(5), leading to either crystalline Si(5)(PO(4))(6)O, SiP(2)O(7) or an amorphous phase as the glass Si(5)(PO(4))(6)O/3SiO(2).2P(2)O(5), depending on the temperature and nature of the trimer precursors. From 1 at 800 degrees C, core-shell microspheres of SiO(2) coated with Si(5)(PO(4))(6)O are obtained, while in other cases, mesoporous or dense structures are observed. Atomic force microscopy examination after deposition of the materials on monocrystalline silicon wafers evidences morphology strongly dependent on the precursors. Isolated islands of size approximately 9 nm are observed from 1, whereas dense nanostructures with a mean height of 13 nm are formed from 3. Brunauer-Emmett-Teller measurements show mesoporous materials with low surface areas. The proposed growth mechanism involves the formation of cross-linking structures and of vacancies by carbonization of the organic matter, where the silicon compounds nucleate. Thus, for the first time, unique silicon nanostructured materials are obtained from cyclic phosphazenes containing silicon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号