首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expres- sion, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension.  相似文献   

2.
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expression, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension.  相似文献   

3.
A nonlinear analysis method based on the evaluation of d-infinite and largest Lyapunov exponent was used to study the complex dynamics of air bubbles carried by water and flowing in a microfluidic snake channel. A rich variety of nonlinear dynamics and flow patterns was found through the experimental observation of bubbles’ motion. The results and their graphical representation show the capability of the proposed set of dimensionless parameters to classify the nonlinearity of the process showing also its sensitivity to input flow variations.  相似文献   

4.
The peristaltic flow of a Walter’s B fluid in an endoscope is studied.The problem is modeled in a cylindrical coordinate system.The main theme of the present analysis is to study the endoscopic effects on the peristaltic flow of the Walter’s B fluid.To the best of the authors’ knowledge,no investigation has been made so far in the literatures to study the Walter’s B fluid in an endoscope.Analytical solutions are obtained using the regular perturbation method by taking δ as a perturbation parameter.The appro...  相似文献   

5.
The second-grade fluid flow due to a rotating porous stretchable disk is modeled and analyzed. A porous medium is characterized by the Darcy relation. The heat and mass transport are characterized through Cattaneo-Christov double diffusions. The thermal and solutal stratifications at the surface are also accounted. The relevant nonlinear ordinary differential systems after using appropriate transformations are solved for the solutions with the homotopy analysis method (HAM). The effects of various involved variables on the temperature, velocity, concentration, skin friction, mass transfer rate, and heat transfer rate are discussed through graphs. From the obtained results, decreasing tendencies for the radial, axial, and tangential velocities are observed. Temperature is a decreasing function of the Reynolds number, thermal relaxation parameter, and Prandtl number. Moreover, the mass diffusivity decreases with the Schmidt number.  相似文献   

6.
To get a clear picture of the pulsatile nature of blood flow and its role in the pathogenesis of atherosclerosis, a comparative study of blood flow in large arteries is carried out using the two widely used models, McDonald's and Burton's models, for the pressure gradient. For both models, the blood velocity in the lumen is obtained analytically. Elaborate investigations on the wall shear stress (WSS) and oscillatory shear index (OSI) are carried out. The results are in good agreement with the available data in the literature. The superiority of McDonald's model in capturing the pulsatile nature of blood flow, especially the OSI, is highlighted. The present investigation supports the hypothesis that not only WSS but also OSI are the essential features determining the pathogenesis of atherosclerosis. Finally, by reviewing the limitations of the present investigation, the possibility of improvement is explored.  相似文献   

7.
In order to reveal the self-stabilization effect of the lattice’s historical information on traffic flow, a new lattice hydrodynamic model with consideration of the considered lattice’s historical flow is proposed. The impact of the lattice’s historical flow on traffic stability is uncovered through theoretical analyses and numerical simulation. Through theoretical analyses, the linear stability condition of the new model is obtained, and the nonlinear mKdV equation is derived to describe traffic jamming transition of the new model near the critical point. From numerical simulation, the theoretical analyses are verified and it is shown that the traffic stability can be enhanced by considering the current lattice’s self-information of its historical flow.  相似文献   

8.
A standard conservation form is derived in this paper. The hyperbolicity of Helbing’s fluid dynamic traffic flow model is proved, which is essential to the general analytical and numerical study of this model. On the basis of this conservation form, a local discontinuous Galerkin scheme is designed to solve the resulting system efficiently. The evolution of an unstable equilibrium traffic state leading to a stable stop-and-go traveling wave is simulated. This simulation also verifies that the model is truly improved by the introduction of the modified diffusion coefficients, and thus helps to protect vehicles from collisions and avoide the appearance of the extremely large density.  相似文献   

9.
In start-up of steady shearing flow of two viscous unentangled liquids, namely low-molecular-weight polystyrene and -D-glucose, the shear stress catastrophically collapses if the shear rate is raised above a value corresponding to a critical initial shear stress of around 0.1–0.3 MPa. The time dependence of the shear stress during this process is similar for the two liquids, but visualization of samples in situ and after quenching reveals significant differences. For -D-glucose, the stress collapse evidently results from debonding of the sample from the rheometer tool, while in polystyrene, bubbles open up within the sample, as occurs in cavitation. Some similarities are pointed out between these phenomena and that of lubrication failure reported in the tribology literature.  相似文献   

10.
In this study, a Eulerian-Eulerian two-fluid model combined with the kinetic theory of granular flow is adopted to simulate power-law fluid–solid two-phase flow in the fluidized bed. Two new power-law liquid–solid drag models are proposed based on the rheological equation of power-law fluid and pressure drop. One called model A is a modified drag model considering tortuosity of flow channel and ratio of the throat to pore, and the other called model B is a blending drag model combining drag coefficients of high and low particle concentrations. Predictions are compared with experimental data measured by Lali et al., where the computed porosities from model B are closer to the measured data than other models. Furthermore, the predicted pressure drop rises as liquid velocity increases, while it decreases with the increase of particle size. Simulation results indicate that the increases of consistency coefficient and flow behavior index lead to the decrease of drag coefficient, and particle concentration, granular temperature, granular pressure, and granular viscosity go down accordingly.  相似文献   

11.
We analyzed the phenomenon of ferrofiuid magnetoviscosity in high-permeability wall-region non-magnetic porous media of the Müller kind. After upscaling the pore-level ferrohydrodynamic model, we obtained a simplified volume-average zero-order axisymmetric model for non-Darcy non-turbulent flow of steady-state isothermal incompressible Newtonian ferrofluids through a porous medium experiencing external constant bulk-flow oriented gradient magnetic field, ferrofluid self-consistent demagnetizing field and induced magnetic field in the solid. The model was explored in contexts plagued by wall flow maldistribution due to low column-to-particle diameter ratios. It was shown that for proper magnetic field arrangement, wall channeling can be reduced by inflating wall flow resistance through magnetovisco-thickening and Kelvin body force density which reroute a fraction of wall flow towards bed core.  相似文献   

12.
Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation. Later, it was shown that the main compressibility effect came from the reduced pressure-strain term due to reduced pressure fluctuations. Although better understanding of the compressible turbulence is generally achieved with the increased DNS and experimental research effort, there are still some discrepancies among these recent findings. Analysis of the DNS and experimental data suggests that some of the discrepancies are apparent if the compressible effect is related to the turbulent Mach number, Mt. From the comparison of two classes of compressible flow, homogenous shear flow and inhomogeneous shear flow (mixing layer), we found that the effect of compressibility on both classes of shear flow can be characterized in three categories corresponding to three regions of turbulent Mach numbers: the low-Mr, the moderate-Mr and high-Mr regions. In these three regions the effect of compressibility on the growth rate of the turbulent mixing layer thickness is rather different. A simple approach to the reduced pressure-strain effect may not necessarily reduce the mixing-layer growth rate, and may even cause an increase in the growth rate. The present work develops a new second-moment model for the compressible turbulence through the introduction of some blending functions of Mt to account for the compressibility effects on the flow. The model has been successfully applied to the compressible mixing layers.  相似文献   

13.
A map for the determination of flow pattern for two-phase flow of gas and non-Newtonian liquid in the vertical pipe has been presented. Our own experimental data confirm applicability of such a map.  相似文献   

14.
New analytical solutions for axisymmetric deformation of a viscous hollow circular cylinder on a rigid fibre are given. One of the solutions generalizes the famous Prandtl’s solution for compression of a rigid perfectly plastic layer between two rough, parallel plates and the other is a modification of Spencer’s solution for compression of an axisymmetric rigid perfectly plastic layer on a rigid fibre. All equations are satisfied exactly whereas some boundary conditions are approximated in a standard manner. Special attention is devoted to frictional interface conditions since these conditions result in additional limitations of the applicability of the solution when compared to that based on a rigid perfectly plastic models. In particular, difficulties with the convergence of numerical solutions under certain conditions can be explained with the use of results obtained. Therefore, the solutions can serve as benchmark problems for verifying numerical codes. The solutions are also adopted to predict the brittle fracture of fibres by means of an approach used in previous studies and confirmed by experiment.  相似文献   

15.
In this paper, we studied the effect of driver’s anticipation with passing in a new lattice model. The effect of driver’s anticipation is examined through linear stability analysis and shown that the anticipation term can significantly enlarge the stability region on the phase diagram. Using nonlinear stability analysis, we obtained the range of passing constant for which kink soliton solution of mKdV equation exist. For smaller values of passing constant, uniform flow and kink jam phase are present on the phase diagram and jamming transition occurs between them. When passing constant is greater than the critical value depending on the anticipation coefficient, jamming transitions occur from uniform traffic flow to kink-bando traffic wave through chaotic phase with decreasing sensitivity. The theoretical findings are verified using numerical simulation which confirm that traffic jam can be suppressed efficiently by considering the anticipation effect in the new lattice model.  相似文献   

16.
An experimental investigation was carried out on viscous oil–gas flow characteristics in a 69 mm internal diameter pipe. Two-phase flow patterns were determined from holdup time-traces and videos of the flow field in a transparent section of the pipe, in which synthetic commercial oils (32 and 100 cP) and sulfur hexafluoride gas (SF6) were fed at oil superficial velocities from 0.04 to 3 m/s and gas superficial velocities from 0.0075 to 3 m/s.  相似文献   

17.
18.
This paper presents results from seven experimental facilities on the co-current flow of air and water in downward sloping pipes. As a function of the air flow rate, pipe diameter and pipe slope, the required water discharge to prevent air accumulation was determined. In case the water discharge was less than the required water discharge, the air accumulation and additional gas pocket head loss were measured. Results show that volumetric air discharge as small as 0.1% of the water discharge accumulate in a downward sloping section. The experimental data cover all four flow regimes of water-driven air transport: stratified, blow-back, plug and dispersed bubble flow. The analysis of the experimental results shows that different dimensionless numbers characterise certain flow regimes. The pipe Froude number determines the transition from blow-back to plug flow. The gas pocket head loss in the blow-back flow regime follows a pipe Weber number scaling. A numerical model for the prediction of the air discharge as a function of the relevant system parameters is proposed. The novelty of this paper is the presentation of experimental data and a numerical model that cover all flow regimes on air transport by flowing water in downward inclined pipes.  相似文献   

19.
The impact of the plane front of a rotational discontinuity, which has a circular polarization and propagates in the solar wind along the Sun-Earth radius, on the Earth’s bow shock and the magnetosheath is first investigated in the three-dimensional formulation. The most characteristic values of the solar wind parameters and the interplanetary magnetic field strength in the Earth’s orbit are considered. The global three-dimensional pattern of the flow is constructed as a function of the latitude and longitude of points on the bow shock and the intensities of all the waves appearing in the interaction which significantly depend on the angle of rotation of the magnetic field are found. The solution obtained is necessary to interpret the solar wind parameters and the interplanetary magnetic field measured by spacecraft located in the neighborhood of the Lagrange point and the Earth’s magnetosphere.  相似文献   

20.
This paper describes a trajectory analysis of the inertia collection of monodisperse- and polydisperse-droplets by a normal flat plate and a circular cylinder in gas—liquid mist flow. taking into account the far-wake displacement effect of gas-phase flow. The effects of the far-upstream droplet-size distribution and the gas-phase flow separation upon the local collection efficiency and the velocities and size distribution of droplets on impringement are examined. On the basis of these results. a new equivalent diameter of polydisperse-droplets is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号